
Life of the Party
Justin Fraumeni · Jeremy Warner · Amelia Keller · MaTTHEW Johnson

Introduction

Technology

Evaluations

Acknowledgements

System

 Real-time Motion Controlled Entertainment Lighting

Modern light systems for live entertainment applications are tra-
ditionally rigid in design. For dance shows and concerts, light
schemes are often pre-programmed scene by scene to synchro-
nize with the energy of performances, a process that can be as in-
flexible as it is time consuming. Lighting for party environments
often reacts to music levels, but can be repetitive and predictable.
“Life of the Party” applies principles of computer vision to pro-
vide a plug-and-play solution to lighting design. The system auto-
matically responds to movement in a predefined space and
changes lighting levels to correspond with motion, adding a layer
of real-time human interactivity to entertainment events.

SaikoLED
SaikoLED lights provide full spectrum RGB color and utilize an in-
tegrated arduino microcontroller to generate a wireless network,
through which RGB values can be manipulated.

Kinect for Xbox
Kinect is a motion sensing device originally designed for use with
the Xbox 360 platform. The Kinect features an RGB camera and
depth sensor, which it uses to track the full body movement of
multiple users in three dimensions. Critical to our application, the
depth sensor utilizes an infrared laser and CMOS sensor allowing
it to quantize position points in low lighting levels.

OpenNI SDK
OpenNI is an open source C++ image processing library which
can used to interface Xbox Kinect with Unix-based systems.
OpenNI provides access to the euclidian coordinates of 15 “joint”
data points on up to 6 concurrent users within the Kinect’s view-
field.

Python Liblo
Liblo is an implementation of the Open Sound Control protocol
for POSIX systems. Our system utilized pyliblo, an implementation
in python, to communicate between the laptop hub and the
SaikoLED’s specific IP address.

The LOTP team thanks the following organizations and individuals for their support of the
project: CSC 212 Prof. Hoque, University of Rochester Event Support, Louvre Performance
Ensemble, ROC HCI, Alex Wilson, Michelle Fung, Computer Science Department, Open
Source Software and Firmware (Arduino, SaikoLED, OpenNI,).

High level discription
Upon each camera frame, the
Kinect outputs position and
depth metrics to a computer
hub containing the program
files, scripts, and libraries
through a high speed usb con-
nection, at an update rate equal
to the Kinect’s frame rate of 30
fps average. The computer hub
then sends update commands
to the SakioLEDs through their
self-generated, dedicated wire-
less network.

User joint position, velocity,
and acceleration
OpenNI stores the number of
users within its viewfield in an
array register automatically as they appear, and assigns them a corresponding ID. Users can then be refer-
enced by this ID and euclidian position of skeleton joints and extremities can then be extracted. Upon
every camera frame, euclidian distance is calculated between the current and prior position of a selected
joint of a dancer. The first implementations of Life of the Party rely on the right hand as a representation
of dance intensity. Average velocity is computed for each user using a recent history of distance values and
time change. This in turn is used to calculate an acceleration value for each user. These metrics are now
ready to be used in the color selection algorithms to determine the light control command sent.

Net positive and net negative assignment
Velocity is interpreted by the program logic as either “net positive” or “net negative”, depending on its di-
rection in euclidian space. From the perspective of the Kinect, movements directed to the right, or up are
considered “net positive”, and those directed downwards and to the left are considered “net negative”.

Multiple user functionality
When the system is extended to multiple users, the highest average velocity and acceleration values for a
frame are selected as inputs for the color selection algorithm. Generally, the most active user during each
the frame determines the color selection command sent.

RGB color shifts
The color selection algorithm has a base velocity threshold of 1.0 m/s. Average velocities below this are
too slow to be used in color selection and considered noise. Velocities greater than this contribute to a
direct color change “velocity” around the RGB color wheel, in
a direction defined according to the net direction of the move-
ment: clockwise for “net positive” and counterclockwise for
“net negative”. This specification is made because of the funda-
mental nature of many styles of dance, which feature alternat-
ing directional movements. The ideal end result is alternating
color change between two colors adjacent on the color
wheel, in phase with dance moves.

Complementary color jumps
Abrupt, intense movement by dancers, characterized by a high
acceleration value, results in immediate color change. Acceler-
ation values which exceed a constant threshold result in a
color “jump” across the color wheel to a complementary
color. Source code: https://github.com/jeremywrnr/life-of-the-party

Two iterations of user demo and evaluation took place, in between
prototype versions of the system. The first of these involved 11 individ-
uals. The volunteers were debriefed on the functionality of the system
and allowed to interact with it freely. They were then queried on their
reaction and suggestions.

How would you rate the responsiveness of the system?
Could you see a high correlation between your movements and the lights?
What problems were encountered while using the system?
Would you use the system at a party or dance event in place of sound controlled lighting?
What features could be added to improve the system?

Feedback received during the first iteration was mixed. All users ex-
pressed potential for the system enthusiastically: 100% responded that
they saw themselves using the system at a party in place of sound con-
trolled lighting, however many were confused about the correlation be-
tween their movements and the color change, in the words of one user
“sometimes the color change was too unpredictable.” The first round
of user demos led to several key changes in the system, including the
positive/negative color shifting concept, implemented in order to in-
crease the correspondence and predictability of the color change to
motion.

The second iteration of user study recruited members of Louvre, the
University of Rochester ballet dance group to perform with the system.
The performance, along with the interview that followed, highlighted
the improvements, along with several key remaining weaknesses of the
system that are revealed when the system is scaled to multiple concur-
rent users:

Delay -The time delay that OpenNI implements between dropping
and adding users to its register can prove problematic to a perfor-
mance in which dancers are rapidly entering and leaving the viewfield.
Occlusion - While the Kinect has rich 3D image processing abilities,
recognition failure still occurs when users are superimposed.
Overreactivity - Depending on the style and intensity of dance, sensi-
tivity must be tuned to avoid erratic light change.

FUTURE Prospects
In accordance with recomendations made by staff of University of
Rochester’ s Event Support crew, future versions might implement
color and sensitivity parameter selection through a graphic user inter-
face, as well as concurrent joint tracking. This would increase the flexi-
bility of the system when applied to different performances and events.

Figure 3. RGB color wheel with labeled jumps and shifts

Figure 2. System diagram, highlighting color selection algorithim

Figure 1. OpenNI user tracking depth field image

