
A central idea underlying Bifröst is that viewing
data from the program and electrical state histories
of an embedded system simultaneously can make it
easier to discover bugs. The main part of the UI
shows program execution history on the same time
axis as the electrical activity on the pins of the
microcontroller. The editor shows the source code
of program that generated the trace and links the
selections on both views. The visualizations let
users test hypotheses by comparing expected
values at different points in their system directly to
discover any issues. Users can easily step forwards
and backwards through executed lines of code with
arrow keys. If the user sees that a check flagged an
output changing incorrectly, they can click on the
graph and view what code line caused the output
to occur as well as easily jump backwards to the
lines and pin transitions preceding the change.

After each capture, Bifröst loads and runs its
library of checker test functions against the data.
Checkers have complete access to the device's
software and its behavior (i.e. the text of a given
line and when it ran) as well as all the electrical
behavior of the microprocessor's pins. For example,
if a user has code to set a value to a output pin, that
write will only succeed if that call is preceded by a
call to set that pin as an output. The system
automatically validates that this relationship holds
for all writes that the user issues by examining the
execution history derived from the captured traces.

An Interface for Visualizing and Debugging
the Behavior of Embedded Systems
Will McGrath, Jeremy Warner, Björn Hartmann, et al.

A key challenge in developing and debugging
custom embedded systems is understanding their
behavior, particularly at the boundary between
hardware and software. Existing tools such as step
debuggers and logic analyzers only focus on
software or hardware, respectively. Bifröst is a new
development environment designed to illuminate
the boundary between embedded code and
circuits. Bifröst automatically instruments and
captures the progress of the user’s code, variable
values, and the electrical and bus activity occurring
at the interface between the processor and the
circuit it operates in. This data is displayed in a
linked visualization that allows navigation through
time and program execution, enabling comparisons
between variables in code and signals in circuits.
Automatic checks detect low-level hardware
configuration and protocol issues, while user-
authored checks test particular application
semantics.

Embedded interactive systems remain especially
hard to understand and debug, for several reasons:
Lack of Visibility - Compared to regular software,
their operating state remains opaque and hidden
from the developer
Difficulty of Fault Localization - Faults occur in
many locations, and determining whether they are
located in software, hardware, or at the
intersection of the two is problematic.
Real-time Requirements - Systems that respond in
real-time to user input or sensor data cannot easily
be stopped for breakpoint debugging without
impacting performance.

Bifröst consists of hardware and software to make
it easy to simultaneously capture the programmatic
and electrical behavior of an embedded system, an
extensible system for creating and running
"checkers", test functions that have access to the
information captured by the system, and an IDE
that allows a user to easily navigate and analyze the
captured trace and checker results. In order to
capture an interactive device's electrical activity,
Bifröst makes use of a custom Arduino shield that
breaks out all the Arduino's commonly-used pins
out to headers.. The signals are captured using a 16
channel Logic Analyzer produced by Saleae.

In Bifröst, we instrument and modify a user’s
program to make internal variable and execution
state available while the system is running. With
this we let users focus on the behavior of own
program, not system code or instrumentation.

Figure 3: A function automatically instrumented by
Bifröst to output user code line execution events.

Figure 2: An overview of Bifröst's UI: an integrated code editor, serial console, and trace visualization.

ConsoleCode

Trace

Figure 1: An overview of the hardware and software components of Bifröst’s architecture.

Bifröst
 Checks Introduction

 Motivation

 System Overview

 Automatic Instrumentation

 Bifröst GUI

