
Interactively Optimizing Layout Transfer for Vector Graphics

Jeremy Warner 1 Shuyao Zhou 1 Björn Hartmann 1

Abstract
Vector graphics are an industry-standard way to
represent and share a broad range of visual de-
signs. Designers often explore layout alternatives
and generate them by moving and resizing ele-
ments. The motivation for this can range from
establishing a different visual flow, adapting a de-
sign to a different aspect ratio, standardizing spac-
ing, or redirecting the design’s visual emphasis.
Existing designs can serve as a source of inspi-
ration for layout modification across these goals.
However, generating these layout alternatives still
requires significant manual effort in rearranging
large groups of elements. We present VLT, short
for Vector Layout Transfer, a novel tool that pro-
vides new techniques (Table 1) for transforming
designs which enables the flexible transfer of lay-
outs between designs. It provides designers with
multiple levels of semantic layout editing controls,
powered by automatic graphics correspondence
and layout optimization algorithms.

1. Introduction
Vector graphics are an industry-standard representation for
many visual designs (e.g., logos, posters, interface mock-
ups, and data visualizations). Some artists choose to pri-
marily work with vector graphics over other representa-
tions because vectors best suit curvilinear geometry and
give ‘cleaner’ aesthetics in their final result (Li et al., 2021).
While this cleanliness and scalability are two reasons for
vector graphics’ success, another critical aspect is the flexi-
bility of adapting layouts with discrete objects (vs. rasters).

Humans have both natural biological inclinations and
learned heuristics for inferring information from a design
element’s scale, position, and ordering. Perception of vi-
sual information is a well-established field, characteriz-

1EECS, UC Berkeley, Berkeley, CA, USA. Correspondence to:
Jeremy Warner <jeremy.warner@berkeley.edu>.

Proceedings of the AI & HCI Workshop at the 40 th International
Conference on Machine Learning (ICML), Honolulu, Hawaii, USA.
PMLR 202, 2023. Copyright 2023 by the author(s).

A

B

LA

LB

T A*

LA*

MAB

Designer 
Controls

Type Information

Design : A, B, A*

Layout Rules : LA, LB, LA*

Match Data : MAB 

T*

Transformation : T, T* ⿻

⿻

⿻

Figure 1. Our layout transformation pipeline: given two vector
graphics designs (A, B), we distill design layout data into grouped
semantic layout rules for each design (LA, LB). We also compute a
correspondence between the elements of the two designs (MAB).
Using LA, LB, and MAB, we generate T: a transformation of the
graphic design elements of A. Applying this transformation T
yields design A*, which we then distill new layout rules from (LA*).
Designers can view the applied transformation and leverage control
over which rules are prioritized, yielding new transformation T*,
which in turn yields a new design. This last component is an
interactive, iterative process that aims to let designers retain full
control of their design’s layout while benefitting from automation.

ing the different properties, aesthetics, and relations that
objects can have to each other and what the effect is on
the viewer (Bruno & Cutting, 1988; Purchase, 1997; Card,
1999). Larger elements tend to capture more attention from
viewers, and the relative arrangement and position of indi-
vidual elements also influence the design’s visual focus.

As a result, layouts are a core part of design in relation
to attention and perception, ranging from map design (Wu
et al., 2020), data visualizations (Heer & Bostock, 2010),
mobile user interfaces (Oyibo & Vassileva, 2020), and more
generally across graphic design (Zhao et al., 2018; Bylinskii
et al., 2017; Fosco et al., 2020). Skilled designers orches-
trate these relational qualities, such as alignment, ordering,
and sizing, to effectively allocate and streamline viewers’
attention toward the key information they aim to convey.
This layout process is an iterative task involving resizing
and moving many objects and possibly adding or removing
content altogether. Designers often explore the relational



positions and layout of a vector graphics design to explore
the effects of different variations (Samara, 2017).

Designers leverage many heuristics about what layout rules
they should retain and which they should release to trans-
form their designs. Editing relational features like ordering,
relative offsets, and alignment for different groups of objects
is a bottleneck task in this design process that diminishes
the designers ability to explore new designs. While vector
graphics are scalable, the relative dimensions (aspect ratio)
and actual viewport size influence the preferred way to dis-
play information (e.g., mobile/desktop or poster/billboard),
and reflowing an existing set of elements to a different size
has been explored in related work (Hoffswell et al., 2020).

However, often the source of inspiration for wanting to
change the layout of a design is not simply resizing but
matching another design’s layout; to transfer the layout
from a source or given example design. Here, layouts are
used to modify designs for greater purposes, including redi-
recting viewers’ attention across the design and redistribut-
ing visual emphasis within the same design elements. To fa-
cilitate this transfer of layouts across designs, we showcase
a new tool (VLT) for vector graphic design layout transfer.
Our approach to this layout design transfer problem is to
(a) infer and parameterize layout rules present in a given
design and (b) facilitate the interactive transfer and iterative
refinement of those rules via multiple levels of semantic
editing. We provide these varied levels of semantic editing
and more powerful transformations with automatic graphics
correspondence and layout optimization algorithms.

To enable layout transfer, we extract relational rules from a
given source design and apply those layout rules to a given
target design. This technique can reposition elements dy-
namically from a broad set of example designs. Enabling
transfer involves (a) inferring which relationships to retain
vs. those which to break, (b) creating a correspondence be-
tween the two designs’ elements to map adjustments across
designs, and (c) computing and applying the minimal set of
edits to integrate the source design’s layout.

Our approach also involves iteratively refining and specify-
ing how the layout is transferred with a range of techniques
(Table1): (a) globally copying over layout rules for all ele-
ments, (b) copying all layout rules for a subset of elements,
(c) specifying which rules design elements should adhere to,
(d) specifying which properties to change per element, and
finally (e) manually adjusting design elements with direct
manipulation on the output canvas. The set of rules (e.g.,
LA) for the output canvas updates in real time.

Our contributions include the following: (1) a description of
a pipeline for interactively optimizing layout transfer across
designs; (2) VLT, a novel tool that implements this pipeline;
(3) an gallery of example results generated with our tool.

2. Related Work
We highlight two related areas: learning information about
the patterns encoded in a given design and work that seeks
to generate and manipulate the layouts of different designs.

2.1. Design Patterns Recognition

Recognizing design patterns plays a crucial role in a range
of layout tasks. In recent years, deep learning models have
been proposed to address different aspects of vector graph-
ics, including inference, generation, and editing (Ha & Eck,
2017; Azadi et al., 2018; Li et al., 2020; Jain et al., 2022;
Ma et al., 2022; Lawton et al., 2023). For UI design tasks
specifically, previous research introduced a screen corre-
spondence approach that focused on mapping interchange-
able elements between user interfaces (Wu et al., 2023a).
This approach involves screen categorization and employs a
UI Element Encoder to reason about the relative positions of
UI elements. In the domain of UI layout understanding, the
Spotlight model (Li & Li, 2022) adopts a vision-language
approach. This model takes a combination of inputs, includ-
ing a screenshot, a region of interest, and a text description
of the task. These inputs are processed using a multi-layer
perceptron and a transformer model, resulting in a weighted
attention output. The output of the Spotlight model can be
utilized for various UI design tasks (e.g., widget captioning,
screen summarization). Additionally, Shin et al. (Shin et al.,
2021) proposed a multi-level correspondence method that
leverages graph kernels to facilitate editing vector graphics
designs. This approach enables efficient editing of vector
graphics by computing element-to-element correspondences
at different levels of granularity. Building upon these ex-
isting approaches, our work incorporates a graph-kernel
based method for inferring objects and computing corre-
spondences across canvases. We can leverage the structural
information of the designs to establish correspondences and
perform efficient inference across multiple graphic designs.

2.2. Layout Generation

Prior works have explored different approaches for layout
generation and manipulation. Datasets such as Rico (Deka
et al., 2017) and WebUI (Wu et al., 2023b) can be used
for training probabilistic generative models of UI layouts.
Recent approaches explored transformer-based models in
generating layouts (Lee et al., 2020; Arroyo et al., 2021;
Kong et al., 2022). With Im2Vec, researchers used differen-
tiable rasterization to vectorize raster images and interpolate
between them (Reddy et al., 2021). Others learned implicit
hierarchical representations for vector graphics to aid gen-
eration tasks, though they have focused on simpler designs
(e.g., fonts) (Carlier et al., 2020; Lopes et al., 2019). For
layout transfer task, the Bricolage algorithm (Kumar et al.,
2011) employed a technique for generating mappings be-



Figure 2. The VLT interface showing the source layout (e.g., B), the output layout (e.g., A*), and the layout rule customization panel.
This output and the original target (A) can be toggled. The layout rules dynamically update as the output canvas is updated; here they
show detected horizontal and right alignment rules. There are also global and element-specific layout transfer buttons, and a per-element
property transfer based on that element’s matched element. This also works for multiple selected elements, grouping alike values.

tween Web pages by dividing them into significant regions
and rearranging the elements to reflect parent-child rela-
tionships within a tree structure. However, it specifically
focuses on HTML/CSS content and does not encompass
visual layout transfer for vector graphics. Also, the wealth
of example website designs that Bricolage could leverage
for training is comparatively scarce for vector graphics.

DesignScape provides users with layout suggestions, im-
proving the efficiency of brainstorming designs (O’Donovan
et al., 2015). Li et al. used the idea of Generative Adver-
sarial Networks and proposed a differentiable wireframe
rendering layer, specifically improving alignment sensitiv-
ity and better visibility of overlapping elements (Li et al.,
2019). Ye et al. (Ye et al., 2020) proposed Penrose that
aimed to create mathematical diagrams using a layout en-
gine that compiled code into layout configurations with
the least overall energy while satisfying constraints and
objectives. Cheng et al. (Cheng et al., 2023) presented a
latent diffusion model PLay and conditioned on user input
guidelines to generate UI layouts. Chai et al. (Chai et al.,
2023) introduced the LayoutDM framework, which utilized
a transformer-based diffusion model to generate layouts
by representing each layout element using geometric and
categorical attributes. This model employed a conditional
denoising diffusion probabilistic model to gradually map
samples from a prior distribution to the actual distribution of
the layout data. Like Chai et al. (Chai et al., 2023), Naoto et

al. (Inoue et al., 2023) utilized diffusion models to generate
layouts. Additionally, Dayama et al. (Dayama et al., 2021)
proposed an interactive layout transfer system that allowed
users to transfer draft designs to predefined layout templates.
Their approach relied on an interactive user interface and an
existing library of layout templates. However, the system
required that the component types be predefined and rigidly
categorized as either headings, containers, or content. Our
tool can transfer the user-input target layout onto the source
design while retaining layout rules and consistency inferred
from the designs, giving more flexibility for design tasks.

3. VLT Walkthrough
The broadest set of use cases for a tool like VLT is when
designers would like to transform the layout of an existing
design with a source reference design. Figure 1 shows an
overview of how designers can use VLT to transfer layouts
across designs, and Table 1 shows the core controls that
VLT provides to designers for transforming the layout of
their design using the source design as a source of inferred
example rules. This walkthrough focuses on the iterative
cycle designers can leverage to refine their output layout.

First, designers load two graphic designs A and B into VLT
(A = target = existing design to transform, and B = source
= reference design). Next, VLT will generate a correspon-
dence matrix and match information (MAB) between the two



Figure 3. The left side of this figure shows two designs with varying layouts, along with differing layout rules that were inferred for
corresponding groups of elements. The boxes and links in these designs represent different rule types that we recognize. The right side
shows a representation of the different types of layout relationships we can model between elements. Asymmetric rules (e.g., containment)
are represented internally as ordered trees while symmetric rules (e.g., alignment) are represented as simple sets (see also Table 2).

sets of design elements (Shin et al., 2021). VLT also infers
sets of semantic rules (listed in Table 2) for each layout.

Designers can then copy the layout of the previous source
design globally by inferring the position and size from the
matched elements across designs. The initial base transfor-
mation T uses the corresponding elements’ base position
and sizing, often giving subpar results (Figure 5). This naive
case works on designs with a perfect one-to-one correspon-
dence between design elements. However, many designs
vary in the amount and type of elements they contain. De-
signs may also change in their canvas size or aspect ratio,
which copying position and size alone cannot address.

In these cases, VLT can be used to retain and adjust layout
rules present in the original target design. There is also an
incremental rule-based optimization pipeline designers can
leverage based on heuristic design rules (e.g., LA). The dy-
namic set of layout rules that VLT infers can be viewed and
modified in the right-most layout column of the interface
(Figure 2), and a more detailed example with rule callouts
is shown in Figure 3. The rule list updates according to
the selected canvas elements. This brings the designers’
attention to controls for leveraging these rules to modify
their designs’ layouts. Elements may be manually adjusted
(i.e., direct manipulation) on the output canvas, and the set
of detected layout rules updates in real time. In addition
to copying the layout of an entire design, designers may
opt only to transfer (or reset) layout properties for specifi-
cally selected elements. Other elements can be added from
layout rules here (clicking the + next to the rule member
list) and conforming the marginal spacing across design
versions. For example, selecting the H-Off or V-Off buttons

Table 1. Designer Controls for Layout Editing

Granularity Technique
Highest Global Layout Copy

Element Layout Copy
Individual Rule Adherence
Correspondence Update
Element Property Copy

Lowest Direct Manipulation

Table 2. Supported Layout Heuristic Rules (e.g., LA)

Type Name
Asymmetric Containment

Relative Ordering
Symmetric V/H Alignment

Bounds Overlap
Marginal Offset
Same W/H

will adjust the marginal spacing and offset for the currently
selected elements to an inferred value based on their match.
Designers may select elements from the source design (B),
observe the rules they adhere to, and apply them (or a rule
subset) to elements on the output canvas. Once satisfied,
they can export the transformed design as an SVG.



4. Optimizing Layouts
To optimize the transferral of a layout across designs, we
must first create a representation of that layout. We con-
struct a transformation T that includes scale and translation
amounts per graphic element to do this. Similarly, we first
represent the layout of a specific visual design A as the
position and size of each graphical element (e).

e → [x, y, z, w, h] (1)

Note that z here refers to the z-index or relative layering,
while x and y refer to the uppermost, leftmost element
canvas point for that element. Also, w and h refer to the
element’s canvas width and height, respectively. So, a given
transformation T to transform a graphic design A would
consist of a set of changes to these element properties:

T → ∀e ∈ A : [δx, δy, δz, δw, δh] (2)

On top of this broad representation, we also build up sets of
heuristic-based rules (e.g., LA, LB) that we can relate across
multiple designs. These rules include containment, order-
ing, alignment, overlapping elements, relative margins, and
size (Table 2), which may have either symmetric or asym-
metric relations between elements. For example, alignment
is symmetric in that all elements have the same relation-
ship with each other (internally represented in VLT as a
set), while containment has a structured ordering between
related elements (internally represented as an ordered tree).
Visual examples of the distinction between symmetric and
asymmetric rules are shown in Figure 3.

The optimal T choice for an exact one-to-one pairing of
design elements is obvious – rescale and reposition the ele-
ments precisely to where they were in the corresponding de-
sign. However, there clearly are better ways to edit graphics
than manually adjusting x and y coordinates. Recognizing
and leveraging inferred design rules is a promising direction
toward using automation while retaining designer control.
We also want to handle complex one-to-many mappings
between the sets of design elements.

First, layout rules from the source for corresponding ele-
ments are applied to the output graphics. This is initially
done using the matched element’s position and size, which
may cause multiple elements to overlap (Figure 5). To al-
leviate this, we also provide buttons to extend the marginal
offset (Vertical-Offset/Horizontal-Offset) between matched
elements onto the linked target elements. Individual rules
can be specified to recompute a transformation that com-
plies with the specified rule. This iterative optimization is
an active project development area, and we detail ongoing
work in our layout optimization in 6.2.

Source (B) Target (A) Auto (A*) Final (A*)

Figure 4. Example output gallery of layouts made with VLT. Each
column shows (in order from columns 1-4): the source or inspiring
layout (B), the target input design (A), the fully automatic result of
globally applying layout transformation rules to the entire design
with no iterative designer control, and the final output design
iteratively made with VLT’s range of semantic editing controls.

5. Design Results
To showcase the effectiveness of our method, we provide
several example graphics that were transformed using the
pipeline and tool detailed in this paper in Figure 4. The
generation of these graphics was done by the authors using
VLT. We aim to include more complex and varied examples,
and have actual designers use VLT to transfer layouts across
existing designs. For the graphics we generated, the amount
of UI interactions to transform each design from Target to
Final (per row) is 7 / 8 / 12 / 15, and the total number of
transformed element properties is 111 / 76 / 291 / 128. The
higher numbers for the property changes reflect that many
properties can be changed with a single UI interaction in
VLT. The procedure we followed to transfer layouts was
to first match designs, transfer the global layout using the
correspondence, leverage layout rules as needed, and finally
tweak elements directly on the canvas. This follows gran-
ularity shown in Table 1; paint with the broadest strokes
initially and iteratively handle smaller outlier classes.



6. Discussion
We discuss two main topics: (1) reflections from balancing
designer control with boosting editing workflows with au-
tomation, and (2) limitations of working with layouts in this
way and future steps we envision taking to address this.

6.1. Balancing Control & Automation

As automation-driven media creation and manipulation tools
proliferate, there is a valid concern about displacing the
designer from their current creative control. Our goal in
this project is to retain the final control that designers have
over their designs while reducing some of the tedium and
manual labor that goes towards manifesting a specific vision
for that given design. Our high-level approach towards this
goal involves sharing a range of dynamic controls that the
designer can adapt to the level of detail they wish to edit at,
a sort of semantic range of design detail to operate over.

One of the ways we aim to provide this balance of control
and automation includes providing several levels of detail
and forms of editing and specifying transformation rules
with VLT. This approach includes displaying inferred layout
rules that can also modify existing designs, displaying ed-
itable global and element-specific layout data, and enabling
live updates as the designer modifies their output (includ-
ing via direct manipulation). Generally, the more deeply
intertwined any automation becomes into existing creative
practices necessitates deeper robustness and reliability to
successfully operate ‘as expected’, which for many domains
(image style transfer, text-to-image creation, vector layout
transfer) remains a challenging and subjective task.

6.2. Limitations & Future Work

Layout Optimization. The current process for initially learn-
ing a layout transformation T is driven by correspondences,
then refined by leveraging manually-crafted design heuris-
tics. We want to leverage a more flexible approach to both
initially craft and incorporate designer demonstrations and
updates into design layout transformations. We envision us-
ing a combination of heuristic layout information currently
gleaned from the SVG canvas and other vision-based UI
understanding features to bolster the layout transformation
and optimization process. Additionally, our current design
transformation only consists of rescaling (height, width) and
repositioning (x, y, z/layer) design elements. Other valid
transformations exist, such as rotation and skew, but we have
yet to implement them as we have found them less common.
Enabling these transformations may yield additional desired
variations that VLT cannot currently produce.

We also take inspiration from (Kumar et al., 2011), which
details a technique for learning the cost of connecting edges
across sets of web design elements. They infer a new seman-

tic hierarchy tree for both designs and compute a minimal
cost mapping across the nodes of the trees. To do this,
they train a standard multi-layer perceptron for optimizing
weights related to retaining tree ancestry, node siblings, and
unmatched elements. This optimization also considers the
visual and semantic properties of each node that they match.
They base their training on a set of human-provided map-
pings across visual design examples. Also, the optimization
in their work focuses on producing a mapping between de-
sign elements, while we seek to optimize a transformation
of one design’s layout based on that mapping, compared to
the mapping itself.

Differentiable Layouts. Adherence to a discrete set of rec-
ognized layout rules is difficult to optimize because of the
binary nature of rule groups – elements either adhere or
not. To enable optimization of this discrete model, we are
working to build a reward function RT for transformation T
based on the relative adherence and weight of inferred de-
sign heuristics and rules. We will apply Gaussian smoothing
to the position and width/height constraints for symmetric
relations like alignment, element overlap, offset, and sizing
(Table 2). Here, r represents the layout rules that applying
T yields, ωi is the rule weight (which designers may adjust
in a range of ways), and er measures how many elements
correspond to that rule.

RT = Rrule +Roff +Rcon

Rrule =
∑
r

ωr ∗ log(er + 1)

Roff = ωoff ∗ tnon-overlap

Rcon =
ωcon

eunique-prop

(3)

In addition to general rule adherence, we propose metrics
Roff for balancing the relative offset of objects (e.g., favor
non-occlusion of text) and Rcon for increasing the numeric
consistency of almost-alike element properties, a sort of
snap-to-fit implementation (e.g., favor sizing/spacing). Also,
tnon-overlap refers to the non-overlapping text elements, and
eunique-prop refers to the number of unique properties that
exist in a design (less is better). These rewards also will
global adjustable weights (ωoff, ωcon), respectively.

Designers will be able to selectively apply this optimization
to part of the design or simply run it over the entire output
design. In addition, we can optimize specific inferred rules
from the source or target while retaining as much structure
from the alternative goals as possible by explicitly increas-
ing the weight of those sections. Designers could opt to
lock constrained element properties in their design (e.g.,
size) to ensure those properties are not modified, or extend
a manually demonstrated layout change to similar elements.



Element Correspondence. When designs have elements that
are alike, finding a correspondence between the two element
sets (MAB) is natural. However, this element correspondence
between designs will often be noisier or less accurate for
very unrelated or larger designs. One direction for future
work we envision is being able to dynamically infer a set
of joint classes across elements, of which design elements
might belong to many, as opposed to a cross-design element
map. VLT shows grouped layout rules and property changes,
but the level of inference could be smoother and capture a
broader set of similarities to enhance designer control.

User Evaluation. To measure the effectiveness of our ap-
proach to modifying vector graphics designs, we would
like to work with actual designers to see how they might
leverage this tool, whether they could incorporate it into
their existing workflows, and what changes would make it
truly useful to them. The main evaluation metrics would
be (1) what the comparative difficulty and timing would
be for producing designs from the same prompt, and (2)
subjective quality ratings to see if someone using VLT can
make similar quality layout transformations compared to
expert designers. We plan on running a user study with
experienced designers where they will use VLT to transform
several graphics design layouts to enhance the layout trans-
fer process and enhance consistency among designs. We
envision that designers using VLT could create high-quality
layout designs in less time than when creating designs with
traditional manual vector graphics editing software.

Technical Evaluation. Another way of measuring the effec-
tiveness of VLT will be to evaluate the quality of a fully auto-
matic approach to transferring design rules. Like Bricolage
(Kumar et al., 2011), we could leverage human examples to
work towards this automation. Instead of collecting human-
constructed element mappings, we could recruit designers
to transfer layouts across designs as training examples. We
envision a technical evaluation to characterize our approach
that would leverage the number of VLT UI interactions and
individual property edits to get from an initial automatic
set of transfer results to our human-provided goal layout.
We could also share this example set as a benchmark for
progressing on this challenging vector layout transfer task.

7. Conclusion
Our paper presents a novel design tool, VLT, that can en-
able interactive layout transfer optimization. VLT’s process
for inferring and transferring layouts (Figure 1) integrates
automation into the design process while providing several
levels of automation-driven semantic control and editing
techniques (Table 1) for designers to steer and adjust the
resulting final layout. We showcase some preliminary re-
sults (Figure 4) and highlight several important next steps
for addressing the broader challenge of layout transfer.

References
Arroyo, D. M., Postels, J., and Tombari, F. Variational trans-

former networks for layout generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13642–13652, 2021.

Azadi, S., Fisher, M., Kim, V. G., Wang, Z., Shechtman,
E., and Darrell, T. Multi-content gan for few-shot font
style transfer. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7564–7573,
2018.

Bruno, N. and Cutting, J. E. Minimodularity and the per-
ception of layout. Journal of Experimental Psychology:
General, 117(2):161, 1988.

Bylinskii, Z., Kim, N. W., O’Donovan, P., Alsheikh, S.,
Madan, S., Pfister, H., Durand, F., Russell, B., and Hertz-
mann, A. Learning visual importance for graphic designs
and data visualizations. In Proceedings of the 30th An-
nual ACM symposium on user interface software and
technology, pp. 57–69, 2017.

Card, M. Readings in information visualization: using
vision to think. Morgan Kaufmann, 1999.

Carlier, A., Danelljan, M., Alahi, A., and Timofte, R.
Deepsvg: A hierarchical generative network for vector
graphics animation. Advances in Neural Information
Processing Systems, 33:16351–16361, 2020.

Chai, S., Zhuang, L., and Yan, F. Layoutdm: Transformer-
based diffusion model for layout generation. arXiv
preprint arXiv:2305.02567, 2023.

Cheng, C.-Y., Huang, F., Li, G., and Li, Y. Play: Parametri-
cally conditioned layout generation using latent diffusion.
arXiv preprint arXiv:2301.11529, 2023.

Dayama, N. R., Santala, S., Brückner, L., Todi, K., Du, J.,
and Oulasvirta, A. Interactive layout transfer. In 26th
International Conference on Intelligent User Interfaces,
pp. 70–80, 2021.

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan,
D., Li, Y., Nichols, J., and Kumar, R. Rico: A mobile app
dataset for building data-driven design applications. In
Proceedings of the 30th annual ACM symposium on user
interface software and technology, pp. 845–854, 2017.

Fosco, C., Casser, V., Bedi, A. K., O’Donovan, P., Hertz-
mann, A., and Bylinskii, Z. Predicting visual importance
across graphic design types. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and
Technology, pp. 249–260, 2020.

Ha, D. and Eck, D. A neural representation of sketch draw-
ings. arXiv preprint arXiv:1704.03477, 2017.



Heer, J. and Bostock, M. Crowdsourcing graphical per-
ception: Using mechanical turk to assess visualiza-
tion design. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI
’10, pp. 203–212, New York, NY, USA, 2010. Associa-
tion for Computing Machinery. ISBN 9781605589299.
doi: 10.1145/1753326.1753357. URL https://doi.
org/10.1145/1753326.1753357.

Hoffswell, J., Li, W., and Liu, Z. Techniques for flexible
responsive visualization design. In Proceedings of the
2020 CHI Conference on Human Factors in Computing
Systems, pp. 1–13, 2020.

Inoue, N., Kikuchi, K., Simo-Serra, E., Otani, M., and
Yamaguchi, K. Layoutdm: Discrete diffusion model
for controllable layout generation. arXiv preprint
arXiv:2303.08137, 2023.

Jain, A., Xie, A., and Abbeel, P. Vectorfusion: Text-to-
svg by abstracting pixel-based diffusion models. arXiv
preprint arXiv:2211.11319, 2022.

Kong, X., Jiang, L., Chang, H., Zhang, H., Hao, Y., Gong,
H., and Essa, I. Blt: bidirectional layout transformer
for controllable layout generation. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XVII, pp. 474–
490. Springer, 2022.

Kumar, R., Talton, J., Ahmad, S., and Klemmer, S. Brico-
lage: Example-based retargeting for web design. In CHI
2011 - 29th Annual CHI Conference on Human Factors
in Computing Systems, Conference Proceedings and Ex-
tended Abstracts, Conference on Human Factors in Com-
puting Systems - Proceedings, pp. 2197–2206, United
States, 2011. Association for Computing Machinery.
ISBN 9781450302289. doi: 10.1145/1978942.1979262.

Lawton, T., Ibarrola, F. J., Ventura, D., and Grace, K. Draw-
ing with reframer: Emergence and control in co-creative
ai. In Proceedings of the 28th International Conference
on Intelligent User Interfaces, pp. 264–277, 2023.

Lee, H.-Y., Jiang, L., Essa, I., Le, P. B., Gong, H., Yang,
M.-H., and Yang, W. Neural design network: Graphic
layout generation with constraints. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part III 16, pp. 491–
506. Springer, 2020.

Li, G. and Li, Y. Spotlight: Mobile ui understanding using
vision-language models with a focus. arXiv preprint
arXiv:2209.14927, 2022.

Li, J., Yang, J., Hertzmann, A., Zhang, J., and Xu, T. Lay-
outgan: Generating graphic layouts with wireframe dis-
criminators, 2019.

Li, J., Hashim, S., and Jacobs, J. What we can
learn from visual artists about software development.
In Proceedings of the 2021 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’21, New
York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450380966. doi: 10.1145/
3411764.3445682. URL https://doi.org/10.
1145/3411764.3445682.

Li, T.-M., Lukáč, M., Gharbi, M., and Ragan-Kelley, J.
Differentiable vector graphics rasterization for editing
and learning. ACM Transactions on Graphics (TOG), 39
(6):1–15, 2020.

Lopes, R. G., Ha, D., Eck, D., and Shlens, J. A learned rep-
resentation for scalable vector graphics. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pp. 7930–7939, 2019.

Ma, X., Zhou, Y., Xu, X., Sun, B., Filev, V., Orlov, N., Fu, Y.,
and Shi, H. Towards layer-wise image vectorization. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16314–16323, 2022.

O’Donovan, P., Agarwala, A., and Hertzmann, A. Design-
scape: Design with interactive layout suggestions. Pro-
ceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, 2015.

Oyibo, K. and Vassileva, J. The effect of layout and colour
temperature on the perception of tourism websites for
mobile devices. Multimodal technologies and interaction,
4(1):8, 2020.

Purchase, H. Which aesthetic has the greatest effect on
human understanding? In Graph Drawing, volume 97,
pp. 248–261, 1997.

Reddy, P., Gharbi, M., Lukac, M., and Mitra, N. J. Im2vec:
Synthesizing vector graphics without vector supervision.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 7342–
7351, June 2021.

Samara, T. Making and breaking the grid, updated and
expanded: A graphic design layout workshop. Quarry
Books Editions, 2017.

Shin, H. V., Warner, J., Hartmann, B., Gomes, C. F., Win-
nemoeller, H., and Li, W. Multi-level correspondence
via graph kernels for editing vector graphics designs. In
Graphics Interface 2021, 2021.

Wu, H.-Y., Niedermann, B., Takahashi, S., Roberts, M. J.,
and Nöllenburg, M. A survey on transit map layout–from
design, machine, and human perspectives. In Computer
Graphics Forum, volume 39, pp. 619–646. Wiley Online
Library, 2020.

https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/1753326.1753357
https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1145/3411764.3445682


Wu, J., Swearngin, A., Zhang, X., Nichols, J., and Bigham,
J. P. Screen correspondence: Mapping interchangeable
elements between uis. arXiv preprint arXiv:2301.08372,
2023a.

Wu, J., Wang, S., Shen, S., Peng, Y.-H., Nichols, J., and
Bigham, J. P. Webui: A dataset for enhancing visual ui
understanding with web semantics. In Proceedings of the
2023 CHI Conference on Human Factors in Computing
Systems, pp. 1–14, 2023b.

Ye, K., Ni, W., Krieger, M., Ma’ayan, D., Wise, J., Aldrich,
J., Sunshine, J., and Crane, K. Penrose: from mathemati-
cal notation to beautiful diagrams. ACM Transactions on
Graphics (TOG), 39(4):144–1, 2020.

Zhao, N., Cao, Y., and Lau, R. W. What characterizes
personalities of graphic designs? ACM Transactions on
Graphics (TOG), 37(4):1–15, 2018.


