

GOAL: INFER CAPTURE TIME

PRIOR WORK

WHAT DO THE SUN AND THE SKY TELL US ABOUT THE CAMERA?

- Leverage web-cam sequences

(22 cameras, 250k images)

MODELING THE CAMERA

- Low resolution image sequences
- Geographically distributed in US

Jean-François Lalonde, Srinivasa G. Narasimhan, and Alexei A. Efros (2011)

MODELING THE CAMERA

- Calculate camera geometry
- Estimate GPS position (~100km)

RISE OF THE CELL PHONE CAMERA

Prior Work

- Given time/sequence,
estimate GPS position, camera

This Work

- Given GPS/image, estimate time

INFERRING CAPTURE TIME

INFERRING CAPTURE TIME

SOLAR AZIMUTH AS A TIME PROXY

AZIMUTH-TIME RELATION

$$\cos \phi_{\rm s} = \frac{\sin \delta \cos \Phi - \cos h \cos \delta \sin \Phi}{\sin \theta_{\rm s}}$$

- ullet $\phi_{
 m s}$ is the solar azimuth angle
- ullet $heta_{
 m s}$ is the solar zenith angle
- h is the hour angle, in the local solar time
- ullet δ is the current sun declination
- ullet Φ is the local latitude

AZIMUTH-TIME RELATION

$$\cos\phi_{\mathrm{s}} = \frac{\sin\delta\cos\Phi - \cos h\cos\delta\sin\Phi}{\sin\theta_{\mathrm{s}}}$$

ullet h is the hour angle, in the local solar time

TRAINING

MASSIVE FLICKR DATASET

WORLD-WIDE SCALE GEOTAGGED IMAGE DATASET FOR AUTOMATIC IMAGE ANNOTATION AND REVERSE GEOTAGGING

- 14 M geotagged, timestamped images
- Spatially distributed across the globe

Mousselly-Sergieh et. al, MMSys '14, March 19-21 2014, Singapore, Singapore

MASSIVE FLICKR DATASET

WORLD-WIDE SCALE GEOTAGGED IMAGE DATASET FOR AUTOMATIC IMAGE ANNOTATION AND REVERSE GEOTAGGING

- Retains good resolution detail at a local level

Mousselly-Sergieh et. al, MMSys '14, March 19-21 2014, Singapore, Singapore

a) Paris city map with famous landmarks

b) Approximation of Paris city map using the geotags of images taken in Paris

SEARCH FOR SKY

ENCODER-DECODER WITH ATROUS SEPARABLE CONVOLUTION FOR SEMANTIC IMAGE SEGMENTATION

DEEPLAB V3 - CITYSCAPES

[1] Rethinking Atrous Convolution for Semantic Image Segmentation

[2] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

Example Image

Semantic Mask

Example Image

Semantic Mask

Sky percent / images

Image (focused range)

Sky percent / images

Image (focused range)

Of 1M image subset:

RESULTS

TRAINING...

BASELINE: RESNET50. MODEL YET TO PRODUCE DECENT RESULTS...

FUTURE

Inferring Date

Driving Temporal Transformation

