
CodePilot: Scaffolding End-to-End Collaborative Software
Development for Novice Programmers
Jeremy Warner

UC Berkeley
Berkeley, CA, USA

jeremy.warner@berkeley.edu

Philip J. Guo
UC San Diego

La Jolla, CA, USA
pg@ucsd.edu

ABSTRACT
Novice programmers often have trouble installing, configuring,
and managing disparate tools (e.g., version control systems,
testing infrastructure, bug trackers) that are required to become
productive in a modern collaborative software development
environment. To lower the barriers to entry into software
development, we created a prototype IDE for novices called
CodePilot, which is, to our knowledge, the first attempt to
integrate coding, testing, bug reporting, and version control
management into a real-time collaborative system. CodePilot
enables multiple users to connect to a web-based programming
session and work together on several major phases of software
development. An eight-subject exploratory user study found
that first-time users of CodePilot spontaneously used it to
assume roles such as developer/tester and developer/assistant
when creating a web application together in pairs. Users felt
that CodePilot could aid in scaffolding for novices, situational
awareness, and lowering barriers to impromptu collaboration.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
novice programmers; pair programming; collaborative IDE

INTRODUCTION
Learning to code is now a popular activity around the world
due in part to the abundance of software engineering job op-
portunities [12]. Enrollments within university computer sci-
ence departments, coding bootcamps, and programming-based
Massive Open Online Courses have been skyrocketing. The
majority of programming courses (both in-person and online)
focus on the actual mechanics of writing code. However, to
become a productive professional software engineer, novices
need to learn much more than how to write code properly.
They need to also get accustomed to working within a modern
collaborative software development environment – coordinat-
ing with their teammates using tools such as version control

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06–11, 2017, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05...$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025876

systems, testing infrastructure, and bug/issue trackers [1, 3,
10]. Although in theory anyone can install, configure, and
manage a plethora of free open-source tools for all of these
purposes, in practice the logistical overhead of learning to
manage these tools can be extremely daunting to novices who
are already expending large amounts of effort learning the
mechanics of programming itself [2]. To lower the barriers to
entry for novices to get acquainted with collaborative software
development, we created a prototype IDE called CodePilot.

CodePilot enables multiple programmers to coordinate in real
time throughout several major phases of modern software de-
velopment – writing, running, and testing code, generating bug
reports, managing the bug/issue tracker, and managing the ver-
sion control system – with no required external software setup
or configuration. It serves as convenient “training wheels” for
novices to quickly get practice with techniques such as pair
programming [13, 14] and test-driven development [7], which
have been shown to improve productivity, software quality,
and knowledge sharing. For instance, when a novice is paired
up with an expert (e.g., a tutor or teaching assistant in a course),
they can learn by serving as an apprentice and watching the
expert work alongside them within CodePilot.

An eight-subject exploratory study found that novice students
were able to use CodePilot to spontaneously assume roles such
as developer/tester and developer/assistant when creating a
web application together in pairs. Users felt that CodePilot
could aid in scaffolding for novices, situational awareness, and
lowering barriers to impromptu collaboration.

This paper contributes a novice-oriented IDE that scaffolds
collaborative development activities such as pair programming,
testing, bug reporting, and version control management.

RELATED WORK
To our knowledge, CodePilot is the first attempt to integrate
real-time collaborative coding, testing, bug reporting, and
version control management into a unified system. Prior
real-time collaboration tools for software development are
focused only on writing code itself rather than on the end-
to-end development process. These are available as plug-ins
for existing IDEs (e.g., CollabVS for Visual Studio [9] and
ATCoPE for Eclipse [5]) and in web-based Google Docs-like
collaborative editors such as Cloud9 (https://c9.io/), Mad-
Eye (https://madeye.io/), and Collabode [6]. Another class
of real-time software collaboration tools (e.g,. FASTDash [1],
Saros [11], Syde [8]) provides situational awareness by in-
forming developers of what development tasks, files, and code

https://c9.io/
https://madeye.io/

Figure 1. CodePilot is a web-based IDE designed for novices. Multiple
users can connect to a shared session via a URL. a) The file selector
enables each user to add, delete, and edit files. b) The code editor pane
is a multi-user text editor similar to Google Docs. c) The activity feed
shows all users’ activities and enables inline text chat.

edits their partners are working on in real time. These tools
directly inspired CodePilot’s activity feed feature (Figure 1c).

FORMATIVE OBSERVATIONS AND DESIGN GOAL
We were motivated to create CodePilot after spending a
semester observing students at our university’s weekly student
hacking (i.e., hobby coding) group meetings. One recurring
barrier we noted from observations and interviews with novice
attendees was the intimidating logistical overhead of setting
up disparate development tools such as testing infrastructure,
bug/issue trackers, and version control repositories, especially
when doing so involved intricate knowledge of command-line
and configuration file tweaking. As a result of this setup over-
head, novices were often reluctant to “dive in” to work on
more substantive projects that involved collaboration, testing,
and version control; instead, they often lingered in the back-
ground and watched passively while the more experienced
students worked on their projects during group meetings.

Based on these observations, we wanted to create an IDE to
get these novices started with collaborative software devel-
opment without the discouraging overhead of external tool
setup. Production-grade web IDEs such as Cloud9 offer in-
tricate configuration options and debugging mechanisms, but
setting these up can also serve as a deterrent for novice pro-
grammers. Thus, our main design goal for CodePilot was to
embed scaffolding for these tools into a simple unified inter-
face, sacrificing advanced power-user features for a stream-
lined novice-friendly workflow. Even though we were directly
motivated by in-person use cases we observed in the university
computer lab, we designed CodePilot to work equally well in
remote online settings such as Massive Open Online Courses.

CODEPILOT SYSTEM DESIGN AND USAGE SCENARIO
CodePilot is a web-based IDE (integrated development envi-
ronment) where multiple users can connect to a collaborative
software development session via a single URL. Project repos-
itories can be imported from GitHub, a popular Git repos-
itory hosting platform. Once imported, users collaborate

Figure 2. When the user clicks the “test" icon in Figure 1b, the code
editor pane is replaced with a testing pane. This testing pane renders the
user’s current HTML/CSS/JavaScript code in the browser, along with a
JavaScript console (top) and an editable task queue linked to GitHub’s
issue tracker for the project (bottom). Clicking the “report issue” button
at the upper right pops up the bug reporting tool shown in Figure 3.

on the project in real time, and can then commit and push
any of their changes back to GitHub. CodePilot is imple-
mented using MeteorJS, employs Firebase/Firepad for doc-
ument synchronization, the Ace web editor, and GitHub’s
Developer API. It is open-sourced under the MIT License
at https://github.com/jeremywrnr/codepilot. The authors also
host a running instance of CodePilot at http://codepilot.xyz.

We illustrate the features and design rationale of CodePilot
using an example usage scenario. Alice and Bob are two stu-
dents working together to create a HTML/CSS/JavaScript web
application. Alice first logs into CodePilot with her GitHub
account and creates empty HTML, CSS, and JavaScript files
for her new project. She then emails Bob the unique URL
of her CodePilot session. When Bob visits that session URL,
both see the IDE interface shown in Figure 1.

Writing Code
Alice and Bob can each write code in any project file just like
in a regular IDE (Figure 1b). If they are editing the same file
concurrently, their changes are synchronized in real-time like
in Google Docs, using Firepad to synchronize edits. They gain
situational awareness [1, 8, 11] and can coordinate via the
activity feed (Figure 1c), which shows a real-time stream of
events (e.g., “Alice created issue X”, “Bob committed changes
to GitHub”) and allows inline text chat. Alice and Bob can
now engage in pair programming [13, 14] where both work on
the same file at once or in side-by-side programming [4] where
each works on their own file while coordinating via inline chat.
The Ace web-based text editor provides language-specific
syntax highlighting and code auto-completion. CodePilot
supports an arbitrary number of concurrent collaborating users
subject to network and CPU limitations.

https://github.com/jeremywrnr/codepilot
http://codepilot.xyz

Figure 3. When the user clicks the “report issue" button in the testing
pane, a pop-up appears that allows the user to highlight parts of the
rendered webpage for emphasis and to black out private data prior to
taking a screenshot. Then the user can write a textual bug report and
CodePilot submits it to GitHub’s issue tracker along with that screen-
shot and a snapshot of the current code, to facilitate reproducibility.

Running, Testing, and Debugging Code
Let’s say Alice is the primary software developer on their
project, and Bob is serving as her tester. As Alice writes new
code, Bob can click the “test” button in Figure 1b at any time
to save a snapshot of their code and enter a testing pane shown
in Figure 2, which overlays over the editor pane in Figure 1b.

CodePilot’s testing pane renders the snapshot of the
HTML/CSS/JavaScript code that Bob just saved and includes
an inline JavaScript console to support console.log print de-
bugging. Using this pane, Bob can check that the HTML/CSS
is rendering as expected and that dynamic JavaScript events
are behaving appropriately. Note that Alice’s new code edits
will not be incorporated into the testing pane until Bob clicks
the “reload" button to explicitly pull in new changes. This
design enables Bob to test a known code snapshot without
risking it invisibly changing without his knowledge.

For our current prototype, we created and evaluated a test-
ing pane for HTML/CSS/JS web applications, but one could
imagine creating other testing panes for different kinds of
apps or platforms. With additional engineering effort, it
is also feasible to hook CodePilot into external testing ser-
vices, such as a class grading platform like Gradescope
(https://gradescope.com/) or a continuous integration testing
service like TravisCI (https://travis-ci.org/).

Bob can chat with Alice in the activity feed to give feedback,
provide documentation links, and add tasks such as feature
requests to an asynchronous queue for Alice to address later.
This queue is synced with GitHub’s issue tracking system so

Figure 4. Before performing a commit, users are shown a visual diffing
interface inside CodePilot, which provides affordances similar to git
status and git reset by summarizing changes since the last commit
and providing a mechanism to reset the file’s content to its last commit-
ted version.

that teammates can see tasks on the GitHub website, even
when not logged into CodePilot. Existing GitHub issues are
also automatically imported into CodePilot, so all issues can
be opened or closed from both platforms.

Generating Bug Reports
If Bob finds a bug when he is testing, he can click the “report
issue” button in the testing pane, which pops up the bug re-
porter (Figure 3). Using this tool, Bob can highlight areas on
the webpage for emphasis and black out private information
that he does not wish to share as a screenshot in his bug report.
In Figure 3, Bob highlights the cat image for emphasis and
then writes a full textual report describing the bug he found.

When Bob submits his bug report, CodePilot creates a new
GitHub issue (using its issue tracker) containing his report
text, screenshot with highlights/blackouts, and a snapshot of
the underlying code that Bob was testing. This way, anyone
can reproduce this bug by checking out that code snapshot.
Alice now gets notified of Bob’s new bug report in her activity
feed. At her convenience, she can switch over to her own
testing pane to see the contents of Bob’s report and check out
his snapshot to reproduce and investigate the bug herself.

The main design consideration in the bug reporter was to
collect as much relevant information inline as possible so that
a tester such as Bob can quickly report bugs without context
switching. Additionally, this graphical selection method of
debugging was chosen because it is intuitive for web interface
designs, which are inherently visual and therefore often will
have bugs that can be recognized visually.

Managing the Bug/Issue Tracker
CodePilot integrates tightly with GitHub, leveraging it as both
a bug/issue tracker and a Git-based version control system.
Alice and Bob can use the testing pane (Figure 2) to directly
add, edit, and resolve issues on GitHub, and they can use the
version control pane (Figure 4) to check out, commit, visually
diff, and revert code versions in Git.

GitHub integration makes it possible for Alice and Bob to
write code, test code, report bugs, and commit changes to
version control entirely within CodePilot while coordinating
via the activity feed. Without this feature, they would need to
use external apps such as the Git command-line client or the
GitHub website to manage the bug/issue tracker and version
control system. Having all of these workflow phases unified

https://gradescope.com/
https://travis-ci.org/

into one IDE also makes it easy for other teammates to join
this project by visiting a URL, as long as they have a GitHub
account and the proper access permissions.

Managing the Version Control System
CodePilot’s fully-synchronous nature prompted some design
compromises and us choosing sensible defaults with regards
to how to best interface with GitHub’s API for asynchronous-
style collaboration. Each commit serves as a complete snap-
shot, so if code is checked out at a specific commit with Code-
Pilot, users can append to the existent history on GitHub, but
cannot rewrite it. CodePilot loads all the code of the chosen
commit, which by default is the HEAD of the active branch.
Then, when committing back to GitHub, the new commit is
simply stacked on top of the HEAD of the active branch.

One immediately apparent problem occurs when trying to
collaborate with users outside of CodePilot, as the repository
histories diverge. In an educational setting to train novices,
we recommend for everyone to work within CodePilot. But
to ameliorate this problem when it does come up, CodePilot
allows for the current state and history to be manually pulled in
from GitHub, but in the process overwrites any uncommitted
changes with the newest commit. It also separates versions
of code by branch, so users working on different branches
in CodePilot do not interfere with each other’s work. New
branches can be created from those inside CodePilot, allowing
for multiple tracks of development inside a single project.

When creating a new commit, there can be only a single author;
to attribute work done by others, one workaround is for the
commit author to explicitly include who they worked with in
the commit message. Before committing, users are shown a
visual summary of changes (Figure 4) and given the chance to
undo any changes they do not want to save. There is no option
to commit a subset of files though, as we opted to keep the
simpler model of saving the entire project as a snapshot rather
than confusing users with partially-committed directories.

CodePilot also features the ability to fork any GitHub reposi-
tory accessible to the current user. For example, with a team
assignment skeleton repository in a class, students can easily
fork it and immediately begin working together, avoiding the
initial hassle of environment setup while gaining the additional
benefits of version control and real-time collaboration.

Finally, there is no notion of explicitly ‘git-pushing’ one’s
code back to GitHub when working within CodePilot. Instead,
GitHub serves as a simple reference log of project snapshots,
so whenever a commit is made, it automatically gets added to
the HEAD of the current active branch. This abstracts away a
fair deal of the networking complexity and distributed system
management that are often error-prone for novice Git users.

EXPLORATORY STUDY OF NOVICE PAIR PROGRAMMING
To gauge novice perceptions of CodePilot, we ran an ex-
ploratory user study where four pairs of students (all first-time
users) used it to collaboratively build a simple web application.

We recruited 8 computer science students from our university
with low to moderate levels of web programming experience
(6 male, 2 female). We paired them up randomly and gave each

Figure 5. The amount of time that each pair of programmers spent on
each component of the web programming task using CodePilot. Each
bar is a pair, split into two halves, one for each programmer in the pair.

pair 30 minutes to build a simple weather display app with
four components – html: create a template for the weather
display, styling: style it according to CSS specifications,
data-fetch: use JavaScript to fetch JSON data from an on-
line weather data source, data-display: dynamically parse,
format, and display the fetched data on the webpage. We
set up CodePilot’s code editor pane with three skeleton files
(HTML, CSS, JS) that participants had to fill in, and we began
each session with a 10-minute tutorial on CodePilot’s features.

Using pilot tests (CodePilot pilots!) we refined this task to
both resemble a realistic web app and one that can be imple-
mented in 30 minutes. We recorded participants’ monitors and
conducted 15-minute semi-structured follow-up interviews to
assess their perceptions of CodePilot and how it compared to
software development tools they have used in the past.

We let each pair work however they wanted within CodePilot
so that we could observe what kinds of interactions emerge
naturally. As expected, pairs varied in how much they worked
collaboratively and also how much time they took to complete
the task. No pair quit the study before completion.

Figure 5 shows how each pair split their time. In general, par-
ticipants worked separately on the simpler html and styling
components and then joined together to complete the more
challenging data-fetch and data-display parts. Since
each pair was co-located to make it easier for the research
team to observe them working together (and to replicate the
in-person student hacking club experience that motivated us to
develop CodePilot), they always coordinated verbally. How-
ever, in follow-up interviews, several mentioned that they
could have easily used text chat if necessary.

Figure 6 shows a detailed timeline of activities that each pair
engaged in, with five types of events – view: looking at a
source code file (HTML, CSS, or JavaScript) in the code editor,
edit: actively editing a file in the editor, test: testing the app
in the testing pane, docs: reading documentation webpages in
the browser, git: managing version control pane. We told each
pair to make at least one Git commit when they finished, but
some made additional commits to save intermediate progress.

Analyzing temporally co-occurring events in Figure 6 reveals
that participants were able to use CodePilot to spontaneously
assume well-known collaborative software development roles
without any prompting by the research team. The most com-
mon role was traditional pair programming where both par-

Figure 6. The amount of time that each pair spent on activities such as
viewing code, editing code, testing, reading documentation, and manag-
ing the Git version control system. Each horizontal bar represents a pair
and is split into two halves, one for each programmer in the pair.

ticipants were viewing and editing the same file at the same
time in the code editor pane. This occurred during 23% of the
total time, aggregating over all 4 sessions. The second most
common role was developer/tester [7] where one person was
in the code editor while their partner was in the testing pane,
which occurred during 21% of the time. The third most com-
mon role was developer/assistant where one person would be
coding while the other would be looking up documentation
on the web to help out their partner, which occurred during
19% of the time. Other roles included both partners looking
up documentation (9%) and both in the testing pane (7%).

Pair C was unique since the second partner (bottom half of
Pair C in Figures 5 and 6) had significantly less programming
experience. Thus, after completing the HTML, they served as
a dedicated assistant the entire rest of the session and made no
more code edits (no pink lines). They supported their partner’s
coding by testing, looking up documentation, and acting as
a second pair of eyes on the code. Thus, CodePilot enabled
collaboration even between people of widely varying skills.

DISCUSSION
Our exploratory study showed that novices can in fact use
CodePilot to successfully work together in common collabora-
tive roles on a simple yet realistic web programming project,
unencumbered by many of the costs of starting up a collab-
orative software development session. We found three main
themes from analyzing the qualitative data of user perceptions
of CodePilot in post-study interviews:

Scaffolding for novices: Participants reported that as relative
newcomers to programming, they found it hard to learn the
nuances of Git at the same time as learning core programming
concepts, which made them often neglect version control en-
tirely in their own projects. They pointed out how CodePilot’s
integrated visual Git interface could be a useful instructional
scaffold to gently introduce novices to version control concepts
before seeing full-fledged command-line tools. They also said
that experts would still prefer the flexibility of command-line
tools, but that CodePilot can quickly get novices onboarded
and working alongside their more experienced peers.

Situational awareness: Participants preferred using CodePilot
over working side-by-side on separate computers using regular
IDEs due to the extra situational awareness provided by the
activity feed and concurrent editing in the CodePilot editor.
Even without talking to one another, they could see what their
partner was doing at each moment so that they did not work
on something redundant or contradictory. In one instance,

both partners of Pair B attempted to use JavaScript to parse
the fetched data using different algorithms, but they saw the
contradiction right away in the shared editor and talked to each
other about how to proceed. Participants also appreciated not
having to deal with unexpected Git merge conflicts that would
have arisen if they had collaborated asynchronously.

Lower the barriers to impromptu collaboration: Even though
some participants still preferred the power-user features of
command-line tools, they appreciated how easy it was to jump
into a new CodePilot session and to send a URL for their team-
mates to join as well. They mentioned how this tool could
encourage more impromptu collaboration amongst develop-
ers, especially for prototyping, since it was so simple to get
started using it. Being university students, our participants
mainly expressed excitement about using CodePilot for class
projects, hobby projects, and hackathons, but they also felt that
it could be useful in their future jobs in the technology industry.
Specifically, they mentioned that CodePilot could encourage
coworkers to work together more due to lower barriers to col-
laboration, and it may also benefit system administrators and
I.T. support personnel at software development organizations.
Instead of wrangling employees to constantly install, upgrade,
and manage multiple versions of disparate tools, I.T. staff can
maintain a single up-to-date CodePilot web application that
all developers use. Having a unified end-to-end environment
also makes it easier for system administrators to debug config-
uration issues that stifle developers (e.g., “Why is my version
control system acting so slow today?").

Although these initial results are encouraging for eliciting first
impressions from novices and generating future design ideas,
further studies are needed to more rigorously quantify Code-
Pilot’s effects on collaboration, productivity, and learning.

CONCLUSION AND FUTURE DIRECTIONS
As more people learn to code both in person and online, it is
important to foster good collaborative software development
habits. CodePilot takes one step toward this goal by unifying
the collaborative development workflow into a single IDE and
thus lowering the barrier to entry for novices. More broadly,
as remote and distributed software development grow more
prevalent in the coming years, it becomes ever more important
to build in collaboration as a core design consideration in
the next generation of IDEs. Our CodePilot prototype points
toward a future where anyone can quickly jump into a software
project and start making meaningful contributions.

In the future, we can extend CodePilot to cover additional
phases of software development such as requirements gather-
ing, project planning, design, and user testing. We also hope to
support parallel prototyping and fork/branch-based models of
development so that collaborators can easily explore alterna-
tives without needing to work on only one version of the code.
We can also investigate how to replay the recorded traces of
collaborative development sessions to train novices offline.
Even more broadly, CodePilot can serve as a research plat-
form: If it were instrumented with fine-grained opt-in logging
and deployed at scale, then software engineering researchers
could mine that data and conduct controlled experiments to
gain insights about how developers collaborate and learn.

ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under grant NSF CRII IIS-1463864, by the Donald
M. Barnard Scholarship, and by the University of Rochester
GEAR Scholarship and University Research Award. Also,
thanks to Dan Hassin for his valuable insights.

REFERENCES
1. Jacob T. Biehl, Mary Czerwinski, Greg Smith, and

George G. Robertson. 2007. FASTDash: A Visual
Dashboard for Fostering Awareness in Software Teams.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’07). ACM, New
York, NY, USA, 1313–1322. DOI:
http://dx.doi.org/10.1145/1240624.1240823

2. Yan Chen, Steve Oney, and Walter S. Lasecki. 2016.
Towards Providing On-Demand Expert Support for
Software Developers. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 3192–3203. DOI:
http://dx.doi.org/10.1145/2858036.2858512

3. Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim
Herbsleb. 2012. Social Coding in GitHub: Transparency
and Collaboration in an Open Software Repository. In
Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work (CSCW ’12). ACM, New
York, NY, USA, 1277–1286. DOI:
http://dx.doi.org/10.1145/2145204.2145396

4. Prasun Dewan, Puneet Agarwal, Gautam Shroff, and
Rajesh Hegde. 2009. Distributed Side-by-side
Programming. In Proceedings of the 2009 ICSE
Workshop on Cooperative and Human Aspects on
Software Engineering (CHASE ’09). IEEE Computer
Society, Washington, DC, USA, 48–55. DOI:
http://dx.doi.org/10.1109/CHASE.2009.5071410

5. Hongfei Fan, Chengzheng Sun, and Haifeng Shen. 2012.
ATCoPE: Any-time Collaborative Programming
Environment for Seamless Integration of Real-time and
Non-real-time Teamwork in Software Development. In
Proceedings of the 17th ACM International Conference
on Supporting Group Work (GROUP ’12). ACM, New
York, NY, USA, 107–116. DOI:
http://dx.doi.org/10.1145/2389176.2389194

6. Max Goldman, Greg Little, and Robert C. Miller. 2011.
Real-time Collaborative Coding in a Web IDE. In
Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (UIST ’11). ACM,
New York, NY, USA, 155–164. DOI:
http://dx.doi.org/10.1145/2047196.2047215

7. Max Goldman and Robert C. Miller. 2010. Test-driven
Roles for Pair Programming. In Proceedings of the 2010
ICSE Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE ’10). ACM, New York,
NY, USA, 13–20. DOI:
http://dx.doi.org/10.1145/1833310.1833313

8. Lile Hattori and Michele Lanza. 2010. Syde: A Tool for
Collaborative Software Development. In Proceedings of
the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 2 (ICSE ’10). ACM, New
York, NY, USA, 235–238. DOI:
http://dx.doi.org/10.1145/1810295.1810339

9. R. Hegde and P. Dewan. 2008. Connecting Programming
Environments to Support Ad-Hoc Collaboration. In
Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE
’08). IEEE Computer Society, Washington, DC, USA,
178–187. DOI:http://dx.doi.org/10.1109/ASE.2008.28

10. James D. Herbsleb. 2007. Global Software Engineering:
The Future of Socio-technical Coordination. In 2007
Future of Software Engineering (FOSE ’07). IEEE
Computer Society, Washington, DC, USA, 188–198.
DOI:http://dx.doi.org/10.1109/FOSE.2007.11

11. Stephan Salinger, Christopher Oezbek, Karl Beecher, and
Julia Schenk. 2010. Saros: An Eclipse Plug-in for
Distributed Party Programming. In Proceedings of the
2010 ICSE Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE ’10). ACM,
New York, NY, USA, 48–55. DOI:
http://dx.doi.org/10.1145/1833310.1833319

12. Patrick Thibodeau. 2013. India to overtake U.S. on
number of developers by 2017. http:
//www.computerworld.com/article/2483690/it-careers/

india-to-overtake-u-s--on-number-of-developers-by-2017.

html. (2013). Accessed: 2016-09-13.

13. Laurie Williams, Robert R. Kessler, Ward Cunningham,
and Ron Jeffries. 2000. Strengthening the Case for Pair
Programming. IEEE Software 17, 4 (July 2000), 19–25.
DOI:http://dx.doi.org/10.1109/52.854064

14. Laurie Williams, Charlie McDowell, Nachiappan
Nagappan, Julian Fernald, and Linda Werner. 2003.
Building Pair Programming Knowledge Through a
Family of Experiments. In Proceedings of the 2003
International Symposium on Empirical Software
Engineering (ISESE ’03). IEEE Computer Society,
Washington, DC, USA, 143–.
http://dl.acm.org/citation.cfm?id=942801.943642

http://dx.doi.org/10.1145/1240624.1240823
http://dx.doi.org/10.1145/2858036.2858512
http://dx.doi.org/10.1145/2145204.2145396
http://dx.doi.org/10.1109/CHASE.2009.5071410
http://dx.doi.org/10.1145/2389176.2389194
http://dx.doi.org/10.1145/2047196.2047215
http://dx.doi.org/10.1145/1833310.1833313
http://dx.doi.org/10.1145/1810295.1810339
http://dx.doi.org/10.1109/ASE.2008.28
http://dx.doi.org/10.1109/FOSE.2007.11
http://dx.doi.org/10.1145/1833310.1833319
http://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
http://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
http://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
http://www.computerworld.com/article/2483690/it-careers/india-to-overtake-u-s--on-number-of-developers-by-2017.html
http://dx.doi.org/10.1109/52.854064
http://dl.acm.org/citation.cfm?id=942801.943642

	Introduction
	Related Work
	Formative Observations and Design Goal
	CodePilot System Design and Usage Scenario
	Writing Code
	Running, Testing, and Debugging Code
	Generating Bug Reports
	Managing the Bug/Issue Tracker
	Managing the Version Control System

	Exploratory Study of Novice Pair Programming
	Discussion
	Conclusion and Future Directions
	Acknowledgments
	REFERENCES

