

ElectroTutor: Test-Driven Physical Computing Tutorials
Jeremy Warner*†, Ben Lafreniere*, George Fitzmaurice*, Tovi Grossman*‡

*Autodesk Research, Toronto, ON, Canada
{firstname.lastname}@autodesk.com

†UC Berkeley, CA, USA
jeremy.warner@berkeley.edu

‡University of Toronto, ON, Canada
tovi@dgp.toronto.edu

ABSTRACT
A wide variety of tools for creating physical computing
systems have been developed, but getting started in this
domain remains challenging for novices. In this paper, we
introduce test-driven physical computing tutorials, a novel
application of interactive tutorial systems to better support
users in building and programming physical computing
systems. These tutorials inject interactive tests into the
tutorial process to help users verify and understand
individual steps before proceeding. We begin by presenting
a taxonomy of the types of tests that can be incorporated into
physical computing tutorials. We then present ElectroTutor,
a tutorial system that implements a range of tests for both the
software and physical aspects of a physical computing
system. A user study suggests that ElectroTutor can improve
users’ success and confidence when completing a tutorial,
and save them time by reducing the need to backtrack and
troubleshoot errors made on previous tutorial steps.
Author Keywords
Physical computing; software learning; reactive tutorials.
ACM Classification Keywords
H.5.m. Information interfaces and presentation: Misc.

INTRODUCTION
A variety of toolkits for building physical computing systems
have been developed, but starting out in this domain can be
daunting for novices. The process of going from schematics
and code posted on the web to a functional system is fraught
with pitfalls, and step-by-step tutorials can lead users to
perform actions without fully understanding their intention.
Research in this area has shown that starting out in this
domain remains difficult, with many students and hobbyists
struggling to realize control over their designs [4, 27]. At the
extreme, Booth et al. showed that less than one third of
participants could complete a simple Arduino assembly task
[4]. To address these challenges, recent work has focused on
supporting development [1, 16, 17] and debugging [9, 26, 34,
38] of embedded systems, but there has been little work
improving upon the format of tutorials for physical
computing projects.

In the software learning literature, there have been many
advancements in interactive tutorials designed to make them
more engaging and increase users’ success. Of particular
promise, reactive tutorial systems [10, 30] can respond to a
user’s actions, automatically progress through steps upon
completion of instructions, and provide error correction and
guidance in response to detecting problems. However, these
techniques are difficult to extend to physical computing
projects, which integrate both software and physical
subtasks, thus complicating user activity tracking.

In this paper, we introduce test-driven physical computing
tutorials, a new approach that is inspired by test-driven
development practices in software engineering [2]. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the authors must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST '18, October 14–17, 2018, Berlin, Germany
© 2018 Copyright is held by the authors. Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5948-1/18/10…$15.00
https://doi.org/10.1145/3242587.3242591

Figure 1: The ElectroTutor interface. The system provides step-by-step tutorials (a) for physical computing projects, a code
editing panel (b) and integrated tests used to verify that each step was completed successfully (c).

mailto:Permissions@acm.org
https://doi.org/10.1145/3242587.3242591

tutorials include interactive tests on each step, requiring the
user to verify wiring, electronics, code, or their own
knowledge before they can proceed to subsequent steps.
Test-driven tutorials can include validations that are both
automatically carried out by the system, or manually by the
user. Involving the user in the validation process has the
additional potential benefit of increasing the user’s
engagement and comprehension of individual tutorial steps.

The main contribution of this work is in applying the test-
driven approach to physical computing tutorials.
Specifically, we contribute a taxonomy of test types for this
domain across three dimensions: the domain being tested
(physical or software), how the test is set up, and how the test
is verified. We then explore the breadth of this taxonomy in
ElectroTutor, our prototype system. ElectroTutor’s interface
is divided into three panels – one for the tutorial instructions
(Figure 1a), one for the coding environment (Figure 1b), and
one for the interactive tests (Figure 1c). Users go through the
tutorial steps as in any other tutorial, but must successfully
complete the interactive tests on each step before proceeding.

Finally, we contribute an initial user study comparing
ElectroTutor to an equivalent baseline tutorial without
interactive tests. Our results show that the addition of tests
enables users to complete tutorials with fewer instances of
backtracking to troubleshoot and fix problems introduced on
previous steps. Our results also suggest that this approach
may be able to decrease task completion time and increase
task success rate.

We conclude the paper by discussing limitations and areas
for future work, including authoring environments for test-
driven tutorials, and applications to other domains.
RELATED WORK
Test-driven physical computing tutorials are related to two
main areas of prior research in the HCI literature – interactive
tutorials, and tools for electronics design and debugging.
Interactive Tutorials
Early HCI research recognized the challenges of developing
effective learning materials for software systems, and
suggested the benefits of minimalist and task-centered
learning materials [5, 6, 35]. Subsequent work explored the
benefits of animated and multi-media assistance [8, 15, 29,
30] and demonstrated that these techniques can help illustrate
dynamic operations, but can also enforce a passive learning
process and force users to work at the pace of the video
demonstration [14]. The Pause-and-Play system addresses
this limitation by automatically pacing video playback in
response to a user’s progress through the tutorial [30].

More recently, a range of tutorial systems have been
proposed that integrate directly with the software being
learned [3, 8, 10, 18, 22, 24, 25, 28, 30, 31], to tightly link
learning materials with the content being taught, and to
provide reactive features that respond to the tutorial user’s
actions. For example, Stencils-based tutorials [21] present
instructions within an application, and ensured users perform

the correct behavior by overlaying a stencil onto the user
interface. Fernquist et al. [10] later defined a design space for
interactive tutorial systems based on their scope (teaching
individual features, lower-level tasks, or higher-level
content-centric workflows) and their interactivity (passive
presentation of learning materials, active mechanisms that
allow users to try out concepts, and reactive tutorials that are
aware of a user’s interactions and can respond to them).
ElectroTutor represents a content-centric reactive tutorial
system, where the tasks involve physical computing projects,
consisting of both a software programming component and a
physical electronics component.

A number of interactive tutorial systems have been
developed for tasks that include working in the physical
world [21, 23, 32, 36]. ElectroTutor builds on this body of
work, with a focus on how physical computing tutorials can
be made reactive by adding tests that validate that the user is
on the right track, or prompt them to debug the project as
they build it.

The idea of test-driven learning has also been embraced by
the online education community, with studies showing the
benefits of having students complete quizzes [11] or prompts
to explain what they are learning [7]. For instance,
Codecademy includes evaluation and knowledge
reinforcement directly into the process of working through
lessons [39], and Khan Academy incrementally adjusts the
tests they provide based on a user’s progress and success on
quizzes [40]. In the HCI domain, recent work has
investigated the potential of in-video prompting – presenting
questions to learners during video playback to prompt
reflection on the content, and to elicit more specific feedback
on course materials for instructors [33]. The tests in our
system share the goal of prompting a deeper understanding
of the material being taught. However, our tests also serve
other functions, such as validating that steps are completed
correctly, and providing specific corrective feedback to the
user in response to common mistakes.
Electronics Design and Debugging Tools
Prior work has shown that novice users face substantial
difficulty in designing and building physical computing
systems. Studies by Booth et al. and Mellis et al. asked
novices to construct simple electronics projects and
documented the challenges they faced [4, 27]. These studies
revealed that novice users can run into trouble choosing the
correct components, wiring components together,
programming logic and variables, and debugging of
hardware and software components.

Several research systems have been developed to address
these challenges. Toastboard [9] is an intelligent breadboard
that assists novices with debugging through LED indicators
on the board itself, and a software interface that provides
troubleshooting tips. Bifröst [26] instruments both the
hardware and software components of embedded computing
projects to help users trace the state of the system and assists
in debugging. Trigger-Action Circuits [1] enables users to

specify desired functionality at a behavioral level, and
generates designs and corresponding instructions for
assembling them. Finally, a number of systems have been
developed that aid in sensing the state of the electronics
components in embedded systems [9, 34, 38], data which
could aid in debugging and troubleshooting.

Whereas many of the above systems are focused on
developing novel hardware and sensing techniques, our work
investigates how such sensing can be used to enable reactive
tutorials for physical computing projects. We also adopt a
“discount sensing” approach, using unused pins from the
project’s Arduino board, or an additional off-the-shelf
Arduino board for targeted probing. In the short term, this
could extend the reach of reactive tutorials into the physical
computing domain, while some of the improved sensing
technologies described above continue to develop.
TEST-DRIVEN PHYSICAL COMPUTING TUTORIALS
Test-driven development (TDD) is a software development
process that involves the repetition of short development
cycles in which functional requirements are turned into
specific test cases, and the software is then improved to pass
these tests [2]. The idea is to keep individual development
cycles simple and keep the developer focused on meeting
specific functional requirements.

Test-driven physical computing tutorials adapt the general
philosophy of TDD to tutorial systems. Specifically, the idea
is to add tests to individual steps of a tutorial to focus the
user’s effort on meeting a set of requirements for that step.
These could be functional requirements (i.e., validating that
the step has been performed correctly), or learning
requirements (i.e., validating that user has learned certain
information, or prompting reflection on the actions
performed in a step). One goal is to prevent a user from
reaching the end of a tutorial and finding that the device they
have built does not work. Diagnosing the source of this kind
of failure can be frustrating and difficult [4]. A secondary
goal is to avoid the scenario where the user reaches the end
of the tutorial and has a working system, without a full
understanding of what they did to make it work.

As a starting point for developing a test-driven tutorial
approach, we considered the design space of how tests could
be integrated into tutorial steps, and the roles they could play.
Design Considerations
Below are a set of important considerations related to how
tests could be integrated into tutorials.

Purpose. Tests can serve a range of purposes, including
evaluating the user’s knowledge, emphasizing certain
information to the user, or validating that a step is completed
correctly. In ElectroTutor, we focus on the purposes listed
above, but we also see potential for tests to be used to provide
feedback or data to the tutorial author, or to an instructor, an
idea which has seen some exploration in recent work [33].

Authoring. Another consideration is how tests will be
authored. In ElectroTutor we adopt a model where the

tutorial author creates the tests for a step, based on their
understanding of the functional and learning requirements
for that step. However, there may be advantages to enabling
tutorial users, or their peers, to create tests as well, with the
intent of prompting a deeper reflection and understanding of
the tutorial content.

Guidance. In TDD, tests typically pass or fail, but given the
broader set of intents for tests in test-driven tutorials, tests
could provide a range of different types of guidance to users
(e.g., visualizing the system state to promote deeper
understanding, or providing specific corrective feedback or
debugging tips in response to certain conditions). We include
a number of these approaches in ElectroTutor.

Adaptivity. Finally, tests can be adaptive, being included on
a step depending on a model of the user’s knowledge, or
results and measurements from previous tests. Tests could
also be included for a randomly-selected subset of users, to
sample the knowledge of a larger group. In ElectroTutor, we
adopt a fixed set of tests that all users must pass, but we view
adaptive testing as an interesting area for future work.
Taxonomy of Tests for Physical Computing Tutorials
The above set of dimensions provide a general design space
for test-driven tutorials. Next, we consider a more specific
taxonomy of test types for physical computing tutorials. The
dimensions of this taxonomy include how the test is
initialized (Test Setup), how it is verified (Test Verification),
and the domain of the test (Test Domain). Figure 2 illustrates
this taxonomy, resulting in 10 unique test classes.

Test
Setup

Test
Verification

Test Domain
Software Physical

Manual
Manual SM,M PM,M

Automatic SM,A PM,A

Automatic
Manual SA,M PA,M

Automatic SA,A PA,A

None
Manual SN,M PN,M

Automatic
Reactive tutorial systems, e.g.:

[10, 30] [21, 32]
Figure 2. A taxonomy of tests that can be used within test-
driven tutorials for physical computing. The ten resulting
test classes are numbered for later reference.

Test Setup
The setup up or initialization for a test can be manual,
automatic, or none.

Manual: In the case of manual setup, the user is required to
perform additional actions (beyond those required by the
tutorial step) before the test is performed. For example, the
user may be asked to place probes on a specific hardware
component or pin, select a block of code, or manually engage
a sensor that will be used by the test. This has the advantage
of engaging the user in the testing process, but also has a
potential downside in that these setup actions could introduce
additional errors (e.g., if the user places probes incorrectly).

Automatic: With automatic setup, the system automatically
performs any required initialization steps for the test,
potentially behind-the-scene without the user’s knowledge.
For example, test code could be injected onto a board to test
if an LED is functioning or inserted properly. Automatic
setup has the advantage that it may be less error prone than
having the user manually perform these actions.

None: In some cases, no setup is required for a test beyond
completing the current step of the tutorial. This is the case
with many reactive tutorial systems, where the tutorial
system simply confirms that the user has performed a
required instruction (e.g., testing if they selected a specified
tool). This class of test also includes those that don’t measure
anything from the hardware or software (e.g., a test that asks
the user to respond to a question to test their knowledge, or a
test that asks the user to confirm that a certain outcome
resulted from the current step of the tutorial).
Test Verification
In addition to the setup of a test, the verification of the test
can also vary, being either manual or automatic. Verification
cannot be none as we require tests to pass before allowing a
user to proceed to a subsequent step.

Manual: In some cases, it can be advantageous to have the
user evaluate the success of a test. For example, the user
could answer a question “Does the light turn on when you
press the button”. We adopt this approach in ElectroTutor to
address cases in physical computing tutorials that are
difficult to sense automatically, and cases where manual
verification may assist with knowledge retention. This helps
avoid the need for specialized hardware or instrumentation.

Automatic: In TDD, tests are typically fully automatic, with
the system evaluating whether certain conditions are met.
For tests in tutorials, the system could similarity evaluate
whether certain conditions hold and a test has passed. This
type of test may require the system to watch for specific
condition as the hardware runs, or verify that a variable is set
to a specified value at runtime.
Test Domain
An interesting aspect of physical computing tutorials is that
they contain steps related to both software and physical
electronics. As such, the domain of tests can be either
software or physical.

Software: Software tests are concerned with the software
component of the physical computing project being built, or
aspects of the development environment being used to write
code for the project. For example, testing that required code
for a certain step has been entered properly, that a variable
takes on an expected value during runtime, or that the user
understands what a specific line of code is used for.

Physical: Physical tests are concerned with the physical and
electronic components of the system being built, such as
whether hardware has been inserted and wired properly, or
physical components are functioning as expected.

ELECTROTUTOR
ElectroTutor is a tutorial system that merges traditional step-
by-step tutorial content with interactive verification tests.
The interface for ElectroTutor, consists of static instructional
content (Figure 1a), an Arduino-like integrated development
environment (Figure 1b), and an interactive testing panel
(Figure 1c). We discuss each of these components in turn.
Instruction Panel
The instruction panel displays the current step’s instructions
to the user in text with associated images or short videos.
‘Next’ and ‘Back’ buttons enable the user to navigate
through the steps of the tutorial. However, for steps with
associated tests, the user can only proceed once the tests for
that step have been passed. Until all tests have been passed,
the next button is disabled and a message is displayed to
complete the tests before progressing (Figure 3).

Figure 3. Users are prompted to complete the tests
associated with the current step before proceeding.

Development Panel
The development panel provides an integrated Arduino-like
IDE, with compile and upload buttons, a code editing area,
and an output panel. At the start of the tutorial, the IDE is
initialized with the standard empty setup() and loop()
functions. At any time, the user can edit code and compile or
upload it to the connected Arduino board for the project
being assembled.
Testing Panel
The testing panel displays any associated tests for the current
step. Individual tests are expanded when the user starts a
step, and are automatically collapsed once completed. Each
test provides instructions to the user, and may include
interactive widgets for the user to interact with as part of
performing the test. A check mark icon or ‘X’ icon indicate
if each individual test has been passed or failed (Figure 4).

Figure 4. A step with two tests. The first test is collapsed,
with a green check mark indicating it has passed. An ‘X’
icon indicates the second test has failed, and a custom error
message is displayed.

Tests can display custom-authored error or feedback
messages when the test fails (e.g., to provide corrective
feedback), and the user can repeat a test as many times as

they wish until it has passed. When all tests for a step have
been successfully passed, the user can proceed to the next
step (Figure 5).

Figure 5. The user can proceed once all tests have passed.

Test Types
ElectroTutor implements a set of tests that exemplify the
various test types defined in our taxonomy (Figure 2). For
some test types, the system uses an auxiliary circuit probe
device, consisting of an Arduino Uno in a 3D printed case,
to record physical measurements (Figure 6). Alternately,
unused input pins on the project’s Arduino board could be
used for this purpose. In this section, we describe the range
of tests implemented in the system, referring to example tests
used in a “Light-Sensitive Alarm” project described later in
the paper.

Figure 6. A secondary Arduino Uno was used as a circuit
probe device (e.g., for physical tests with manual setup).

SM,M, PM,M: Confirmation Tests: For a Confirmation Test,
users manually execute a specified action, and then report the
outcome using a multiple choice or yes/no prompt (Figure
7). The action the user is instructed to perform could be in
the software or hardware components of the project.

Figure 7. A confirmation test asks the users to manually
report the result of a specified action.

SM,A: Compile, Upload, and Code Selection Tests. The
Compile and Upload tests are used to test the user’s code.
When run, the test compiles or uploads the user’s code to the
project’s Arduino board. The system automatically detects if
the operation is successful. If these tests fail, the user is
shown a sanitized error message from the compiler, along
with any custom messages that the author has added to the
test (e.g., to suggest troubleshooting steps).

In the Code Selection Test, the user is prompted to highlight
a portion of their code. For example, one such test in our
tutorial asks the user to “Highlight the part of your code
which turns on the buzzer”, which would only pass when the
user highlights code containing the string tone(buzzer,
freq, 10) (Figure 8).

Figure 8. A Code Selection Test. (a) The user is prompted to
highlight a section of code; (b) The user highlights the code
in the editor; (c) The code is displayed in the test pane and
the user clicks to check their response.

PM,A: Voltage, Frequency, & Continuity Tests. For these
tests, the user takes voltage, frequency, or continuity
measurements using the circuit probe device. The system
tests the readings from the probe device against a reference
value (or a value range) that has been pre-authored by the
tutorial author. When the test is started, code is sent to the
circuit probe, configuring it to sense the relevant attribute.
The measurement is shown graphically in real-time, and the
test passes when the expected value is achieved (Figure 9).

Figure 9. For a voltage test, (a) the user is prompted to
attach the circuit probe device to the circuit (b), and run the
test. (c) Measurements are then displayed, and the test
passes when the expected value is read.

SA,M: Manual Variable Test. When the user initiates this test,
their code is automatically instrumented to monitor select
variable data at runtime, and the instrumented code is

uploaded to the project’s Arduino board. The user is shown
a visualization of the data trace and asked to confirm that it
matches the expected pattern, which is pre-specified by the
tutorial author.

PA,M: Auto-Upload Test. This test is used to assess whether a
hardware or circuit component of the system has been
properly built, before the user writes associated code for that
part of the project. When the user initiates this test, the
system uploads pre-authored code to the project board. The
user then manually verifies that the component performs as
expected. For example, the user might verify that a Piezo
buzzer makes the expected sound when the test is executed
(Figure 10). This allows the user to confirm that a physical
component is working as expected, before writing code or
integrating additional parts.

Figure 10. The Auto-Upload test uses pre-authored code to
validate hardware components of the project.

SA,A: Auto-Variable Test. As in the manual variable test, this
test instruments the user’s code to track variable data at
runtime. The tutorial system then monitors the instrumented
variables to confirm that they pass pre-authored test cases.
These tests can track multiple variables, record which line
number variables are changed on, and can use both strict
equality and range inclusion validation techniques.

PA,A: Auto-Sense Test. In this test, the system uploads code
to read measurements from the project board’s pins. For
example, this could be used to test that a sensor has been
properly connected to the project board. The system
performs configuration, measurement, and verification
automatically. Based on any deviations from expected
values, the system can provide feedback on why the test
failed, or troubleshooting tips from the tutorial author.

Figure 11. Knowledge tests are used to test the user’s
comprehension of concepts within a step.

SN,M, PN,M: Knowledge Tests: In the Knowledge Test, the user
answers knowledge-based questions related to the tutorial
content (Figure 11). If a question is answered incorrectly,
users are presented with corrective guidance pre-authored by
the tutorial author.
Tutorial and Test Authoring
In the current version of ElectroTutor, tutorial content and
tests are manually authored in human-readable YAML-
formatted configuration files. Each test is represented by an
entry specifying the type of test (e.g., voltage threshold test),
instructional text to show to the user (to specify the intent of
the test and any necessary setup instructions), and a set of
test-specific parameters (e.g., the threshold voltage). This
corresponds to the simple design of the tests in the interface,
which include a title, a short instruction to the user, and the
interface for running the test. Finally, an optional “on error”
message can be included for tests, which is shown to the user
if the test fails (e.g., to provide suggestions for debugging).
Though we did not develop a graphical interface for creating
tests, it would be straightforward to do so, because each type
of test follows a simple structured format with a small
number of parameters.

Tutorial content is also represented in structured
configuration files, with each step specified in the Markdown
format, which is rendered into HTML for the interface.
IMPLEMENTATION
The overall system architecture for ElectroTutor is shown in
Figure 12. The client-side user interface was built using
JavaScript and React.js, server-side data management was
done with Ruby on Rails, and serial port communication with
the attached Arduino devices are processed with the
SerialPortJSONServer tool1.

Figure 12. ElectroTutor system architecture.

To support tests that observe the runtime values of variables
on the project’s Arduino board, we developed a custom
instrumentation tool that parses and modifies the user’s code
before it is uploaded to the board. The parser detects variable
definitions and assignment statements for variables of
interest for a test, and inserts Serial.print() statements that
include the variable being assigned, the value being assigned,
and the line number on which the assignment took place.
These logging statements are transmitted over the serial
connection and read by the tutorial system during runtime.

1 https://github.com/johnlauer/serial-port-json-server

The instrumentation approach above poses a runtime
performance overhead. To reduce this, a variable’s identifier
is mapped to a numeric index before being sent over the
serial port, which is then mapped back to the variable’s name
by the tutorial system, reducing the amount of data that needs
to be sent over the serial connection.

For tests that make physical measurements of the circuit
being built, we use a secondary Arduino Uno board enclosed
in a simple 3D printed case, with two probes exposed (Figure
6). Voltage measurements are performed using the
analogRead() function from the Arduino internal library.
This circuit probe device was inspired by the physical
interface of a multimeter, which can perform a wide range of
measurements with two simple probes. The circuit probe is
flashed with different code based on the test the user runs,
allowing it to serve as a voltmeter, frequency analyzer, and
electrical continuity checker.
EVALUATION
To evaluate the effectiveness of the interactive tests
implemented in ElectroTutor, and to gain initial insights into
the test-driven tutorial approach more generally, we
conducted a user study comparing our prototype system to a
comparable tutorial without tests.
Study Design
The study followed a between-subjects design, with half of
participants in an experimental condition, and the other half
in a control condition. All participants performed a tutorial
for the same physical computing project, but the test-driven
features were only available in the experimental condition.
Specifically, in the control condition, tests were not included
for the tutorial steps, and the participant was free to progress
through the tutorial steps as they wished. In the experimental
condition, participants were presented with tests for many of
the steps, and were restricted from progressing to the next
step until all the tests for that step had been passed.

We designed the physical computing project and tutorial to
ensure that participants in both conditions were exposed to
the same instructional content. While tests may force
experimental participants to consider one aspect of the
tutorial, they did not introduce any additional information
beyond that available to the control participants.
Study Procedure
The study began with an overview of the ElectroTutor
interface. Participants in the experimental condition were
also introduced to the circuit probe device, and given a
simple demo of an interactive test. The participant was then
given a maximum of 45 minutes to complete the tutorial.

Tutorial Project. The tutorial project was to build a light-
sensitive alarm clock system with a reset trigger (Figure 13).
The project included both electronics and programming
components. The tutorial instructions and associated tests for
each step are included in our supplementary materials.

Post-study questionnaire. Following the tutorial portion of
the study, participants answered a post-study questionnaire

which included Likert-scale ratings of their confidence
working through the electronics and programming parts of
the tutorial, what they learned from the tutorial, and how they
liked using the system. Participants in the experimental
condition also answered additional questions on the
interactive tests. To evaluate whether there was a difference
in how much participants learned in the two conditions, we
included knowledge-based questions about the electronics
and programming aspects of the tutorial, from a selection of
concepts that were covered in the tutorial content.

Figure 13. The completed Light Sensitive Alarm, consisting
of an LED ring, light sensor, buzzer, and a reset button.

Participants
We recruited 12 participants (10 male, 2 female, ages 20-54,
mean 34, SD 11) through an email to employees at a large
software company. Participants were screened to ensure that
they had minimal experience with physical computing, and
were given a $25 gift card as thanks for participating.
RESULTS

Tutorial completion and task times
Overall, 5/6 participants completed the tutorial in the
experimental condition, versus 3/6 in the control condition.
In terms of timing, participants in the experimental condition
had faster tutorial completion times on average
(Experimental: mean 39.7 minutes (SD 6.8), Control: mean
41.5 (SD 4.3)). A t-test did not show this difference to be
significant (p=0.59). However, it is worth noting that these
times include the time taken to run tests for participants in
the experimental condition, which may suggest that the tests
enabled participants to spend less time working through the
tutorial instructions.

In terms of how participants progressed through the tutorial,
Figure 14 shows a timeline of participants’ navigation
through the tutorial steps. We can see that participants in the
control condition exhibited much more backtracking to
previous steps, as compared to the experimental condition
where participants proceeded linearly through the steps.
Analyzing the number of instances where participants

backtracked to a previous step, we found an average of 18.8
(SD 19.3) instances in the control condition, versus an
average of 0.2 (SD 0.4) for the experimental condition. A
two-sample t-test found this difference to be significant
(t(10)=-2.37, p<.05). Note that the participants in the
experimental condition were not restricted from
backtracking to previous steps, and there was no penalty for
doing so – they simply chose not to.

Figure 14. Timeline of participants’ step navigation over the
study session (blue=control, red=experimental).

From observing participants in the control condition, and
discussions with them at the end of the study, backtracking
was often used in response to discovering that part of the
project from a previous step was not working. The
participant would then backtrack to the instructions for the
broken part, and engage in troubleshooting to try and get it
working. This provides validation for the inclusion of tests
as a means of verifying that each step is completed correctly
before allowing the user to move on.
Knowledge transfer and learning
In the post-study questionnaire, we included a set of four
knowledge tests based on the tutorial content. On average,
participants in the experimental condition answered 2.8/4
(SD 0.8) of these questions correctly, versus 2.0/4 (SD 1.0)
for the control condition. A t-test did not show this difference
to be significant (p=0.16).
User confidence and subjective assessments
To understand how the addition of tests affected participants’
confidence while completing the tutorial, we analyzed their
responses to questions in the post-study questionnaire on
their confidence with the electronics and programming
portions of the tutorial (Figure 15). Overall, confidence
appears to be slightly higher for participants in the
experimental condition.

Figure 15. Participants’ responses to the confidence
questions in the post-study questionnaire.

Figure 16. Subjective ratings provided by participants in
the experimental condition.

We asked participants in the experimental condition to
answer several additional questions on the effect of the
interactive tests on the tutorial experience (Figure 16).
Overall, the results are encouraging, with 5/6 participants
indicating strong agreement that the tests increased their
confidence that they were doing each step correctly.
Participants also provided favorable ratings for the tests
being fun, and helping them to understand the tutorial
content. Finally, all participants disagreed with the statement
“working through the tests was frustrating”.

The above ratings were consistent with participants’
feedback on the tutorial system. In particular, one participant
in the experimental condition cited the inclusion of tests
throughout the tutorial as helping his confidence:

The tests were definitely helpful. I especially liked the fact that
tests were done in a granular manner at each step along the
tutorial, so that I felt confident throughout the tutorial.

Conversely, a participant in the control condition expressed
that while following the instructions she was uncertain about
whether she was doing things correctly:

I struggled with the hardware part, I was not that familiar with
it. It’s kind of like, I am following the instructions but I am just
not sure if I am doing it the right way.

Overall, these findings suggest that the inclusion of tests can
increase participants’ confidence while working on a tutorial.
DISCUSSION AND FUTURE WORK
The results from our study are promising – users of
ElectroTutor appreciated the added tests, and indicated that
the system increased their confidence that they were
completing the tutorial steps correctly. Our analysis also
indicates that the test-driven approach enabled users to
diagnose problems immediately, preventing situations where
they may have to backtrack to try and understand why a
problem is occurring and troubleshoot a solution.

0 5 10 15 20 25 30 35 40 45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

time (minutes)

0 5 10 15 20 25 30 35 40 45

time (minutes)

st
ep

 n
um

b
er

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

st
ep

 n
um

b
er

Experimental

Control

Electronics Confidence
(Experimental)

Electronics Confidence
(Control)

Programming Confidence
(Experimental)

Programming Confidence
(Control)

Not at all confident

Extremely confident

"Working through the tests
helped me better understand the

tutorial content."

"Working through the tests
increased my confidence that I
was doing each step correctly."

"Working through the tests was
fun."

"Working through the tests was
frustrating."

Strongly disagree

Strongly agree

In this section, we discuss areas for further developing the
test-driven physical computing tutorials approach, and
limitations of the current work.
Tools for Tutorial Authors
This paper has looked at test-driven tutorials from the
perspective of users, with the tutorial task and its associated
tests hard-coded into the system. An important area for future
work is to consider how to support authors in creating test-
driven tutorials.

As mentioned earlier in the paper, authoring of tests could be
achieved through a simple interface for selecting the class of
test to be added (e.g. voltage test), specifying parameter
values (e.g., threshold of 5V), and adding supplementary
photos (e.g., to indicate where to place testing probes).

In addition to manual authoring, it is worth considering how
the authoring of tests and tutorials could be automated. For
example, text-recognition algorithms could analyze tutorial
content and code to suggest tests that might be appropriate
for a given step. For physical computing tutorials, one could
also imagine a fully by-demonstration approach (similar to
what has been developed for photo manipulation tutorials [8,
14]), in which the author builds and programs a circuit in an
instrumented Arduino development environment and circuit
simulator, and a corresponding test-driven tutorial is
automatically created. For the code component of tutorials,
techniques for working with multi-stage code examples (e.g.
[12]) could be adapted, and linked to the generated tests.

Tests could also be generated through crowdsourcing [20] or
learner sourcing [13, 19, 37] techniques. For example, each
user who completes a tutorial could be asked to suggest their
own tests, and the collection of these user-elicited tests could
be aggregated and refined over time.

In addition to supporting authors in creating tutorials, tools
could be developed to support an author’s awareness of how
a tutorial is being used, and the challenges that are being
encountered by its users. For example, the results of tests
from multiple users could be aggregated and reported in a
tutorial analytics dashboard. The author could see which
tests frequently fail, which may indicate unclear instructions,
or a need for additional tests. Likewise, tests which never fail
may be unnecessary, and could potentially be removed
without diminishing the tutorial experience.
Extending the “Discount Sensing” Approach
Adding more sophisticated hardware sensing is another
interesting direction for future work. While still falling well
below the cost of logic analyzers and oscilloscopes, a higher
resolution testing device could be constructed with an
Arduino Mega board. Additional techniques could leverage
computer vision to visually verify hardware configurations.
For example, a webcam could be used to test expected
behaviors, such as a light blinking or a servo motor moving.

There is also an opportunity to use new forms of sensor-
enabled tools [21, 32, 36] to perform measurement tests in a
semi-automated way. Past work has investigated the use of

recording and replaying of electronic traces to facilitate the
testing and development of electronics designs [17, 34]. With
hardware platforms that have onboard DACs (such as the
Arduino Due or Zero), the system could replay recorded
traces from the tutorial author as inputs, and then verify the
response of the system being built to that trace signal,
highlighting and offering guidance to the user based on the
differences between the expected and actual readings.
Hardware Simulations
Even with more sophisticated sensing, it will be difficult for
a tutorial system to get a complete picture of what is going
on in a physical circuit. An interesting extension of this work
would be to integrate test-driven tutorials into a simulation-
based circuit design platform, where the tutorial and tests can
fully measure the state and behavior of the circuit being built.
Hardware simulations could also be used to build a database
of symptoms associated with common wiring errors, to help
with error diagnosis and providing recovery instructions.
Generalizing to Other Domains, More Complex Projects
Test-driven tutorials are particularly relevant for physical
computing projects, given the challenge of instrumenting a
circuit in the process of being built. However, we believe that
there are additional benefits to the test-driven tutorial
approach, such as user engagement and knowledge retention,
that would make the approach appropriate for other tutorial
domains as well. For example, test-driven tutorials could be
created for complex software applications, or software
development environments. In an image editor, the user
could manually take a screenshot of the layer palette after a
step, to confirm that they have set up the image layers
appropriately. In an IDE, a user could run their code in debug
mode, and answer test questions on the value of a watched
variable. Ideally, engagement with the tests could help users
to learn the skills of debugging unexpected behavior in these
domains.

We see potential for extending our approach to more
complex tutorials as well. For large and complex physical
computing tutorials, it may be valuable to add higher-level
visualizations of the entire project, to give the user a view of
the set of all tests, how they relate to the project and to one
another, and to visualize the user’s progress as they work
through the tutorial content.
Limitations
There are several limitations to our system and user study
that are important to acknowledge, and that point to key areas
for extending this research.

First, in this work, the resolution, performance, and timing
of hardware sensing were not key areas of emphasis. These
capabilities of our system are limited by the capabilities of
the Arduino Uno board we used as the circuit probe device.
The resolution of the analog-digital convert on the Arduino
Uno is 10 bits, which supports a resolution of 4.882 mV with
a 5V power source, which may not be sufficient for testing
precise electronic systems. This implementation decision
also precludes taking accurate measurements outside of the

0-5V reference range that the Uno supports, and affords only
the standard voltage protection offered by the board when
taking measurements. Integrating more sophisticated
hardware sensing capabilities into this type of tutorial system
is an interesting area for future work.

Second, the approach we used to instrument the software
running on the project board imposes a slowdown, due to the
overhead of sending additional data over the serial
connection. This is unlikely to be a problem for many
physical computing projects that involve human interaction,
where human input speed is the main bottleneck, but could
limit the approach’s usefulness for timing-critical systems.

Third, the collection of test types that we implemented in
ElectroTutor was guided by our interest in covering all ten of
the areas of our test taxonomy that are not covered by past
work on reactive tutorial systems, and thus cannot be
considered a comprehensive set of tests for the physical
computing domain. An interesting area for future work
would be to investigate more sophisticated types of tests for
test-driven physical computing tutorial (e.g., tests that
compare measurements against a pre-recorded signal trace,
or check multiple conditions simultaneously). A key
challenge in implementing new and more complex test types
is keeping them easy to use and understand by the users of
the tutorial.

Finally, the sample size for our study was small. We elected
to conduct a small-scale study to gain initial insights on the
approach, but more comprehensive studies are needed to
better understand the impact of this kind of tutorial on
learners, and its longer-term effects on learning and skill
development. It would also be valuable to test this type of
tutorial system with a more diverse group of users, including
participants who have more experience on the hardware side
of physical computing, but less software and programming
experience.
CONCLUSION
We have presented test-driven physical computing tutorials,
a new type of tutorial system that integrates interactive tests
into the tutorial experience. In addition to implementing this
idea in ElectroTutor, we have described design
considerations for this kind of system, and presented a
taxonomy of different types of tests that could guide the
development of future test-driven tutorial systems. Our study
results indicate the promise and potential of test-driven
tutorials, demonstrating that they can help users avoid
backtracking to previous tutorial steps, and demonstrating
that the interactive tests were appreciated by users. While our
work focuses on physical computing tutorials, we have
discussed how the test-driven tutorial approach could be
applied in other domains, and outlined how our work can be
extended, such as by developing authoring tools or
integrating more sophisticated sensing techniques.
REFERENCES
1. Fraser Anderson, Tovi Grossman, and George

Fitzmaurice. 2017. Trigger-Action-Circuits:

Leveraging Generative Design to Enable Novices to
Design and Build Circuitry. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’17), 331–342.
https://doi.org/10.1145/3126594.3126637

2. Kent Beck. 2002. Test Driven Development: By
Example. Addison-Wesley Professional, Boston.

3. Lawrence Bergman, Vittorio Castelli, Tessa Lau, and
Daniel Oblinger. 2005. DocWizards: a system for
authoring follow-me documentation wizards. In
Proceedings of the 18th annual ACM symposium on
User interface software and technology (UIST ’05),
191–200. https://doi.org/10.1145/1095034.1095067

4. Tracey Booth, Simone Stumpf, Jon Bird, and Sara
Jones. 2016. Crossed Wires: Investigating the
Problems of End-User Developers in a Physical
Computing Task. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16), 3485–3497.
https://doi.org/10.1145/2858036.2858533

5. John M. Carroll. 1990. The Nurnberg funnel:
designing minimalist instruction for practical
computer skill. MIT Press.

6. John M. Carroll and Mary Beth Rosson. 1987. Paradox
of the active user. In Interfacing Thought: Cognitive
Aspects of Human-Computer Interaction. MIT Press,
80–111. Retrieved March 5, 2012 from
http://dl.acm.org/citation.cfm?id=28446.28451

7. Michelene T. H. Chi, Nicholas De Leeuw, Mei-Hung
Chiu, and Christian Lavancher. 1994. Eliciting self-
explanations improves understanding. Cognitive
Science 18, 3: 439–477. https://doi.org/10.1016/0364-
0213(94)90016-7

8. Pei-Yu Chi, Sally Ahn, Amanda Ren, Mira Dontcheva,
Wilmot Li, and Björn Hartmann. 2012. MixT:
Automatic generation of step-by-step mixed media
tutorials. In Proceedings of the 25th annual ACM
symposium on User interface software and technology
(UIST ’12), 93–102.

9. Daniel Drew, Julie L. Newcomb, William McGrath,
Filip Maksimovic, David Mellis, and Björn Hartmann.
2016. The Toastboard: Ubiquitous Instrumentation and
Automated Checking of Breadboarded Circuits. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16), 677–
686. https://doi.org/10.1145/2984511.2984566

10. Jennifer Fernquist, Tovi Grossman, and George
Fitzmaurice. 2011. Sketch-sketch revolution: an
engaging tutorial system for guided sketching and
application learning. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology (UIST ’11), 373–382.
https://doi.org/10.1145/2047196.2047245

11. Vicki S. Gier and David S. Kreiner. 2009.
Incorporating Active Learning with PowerPoint-Based
Lectures Using Content-Based Questions. Teaching of
Psychology 36, 2: 134–139.
https://doi.org/10.1080/00986280902739792

12. Shiry Ginosar, Luis Fernando De Pombo, Maneesh
Agrawala, and Bjorn Hartmann. 2013. Authoring
Multi-stage Code Examples with Editable Code
Histories. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and
Technology (UIST ’13), 485–494.
https://doi.org/10.1145/2501988.2502053

13. Elena L. Glassman, Aaron Lin, Carrie J. Cai, and
Robert C. Miller. 2016. Learnersourcing Personalized
Hints. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing (CSCW ’16), 1626–1636.
https://doi.org/10.1145/2818048.2820011

14. Floraine Grabler, Maneesh Agrawala, Wilmot Li, Mira
Dontcheva, and Takeo Igarashi. 2009. Generating
photo manipulation tutorials by demonstration. In
ACM SIGGRAPH 2009 papers (SIGGRAPH ’09),
66:1–66:9. https://doi.org/10.1145/1576246.1531372

15. Tovi Grossman and George Fitzmaurice. 2010.
ToolClips: An investigation of contextual video
assistance for functionality understanding. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10), 1515–1524.
https://doi.org/10.1145/1753326.1753552

16. Björn Hartmann, Leith Abdulla, Manas Mittal, and
Scott R. Klemmer. 2007. Authoring Sensor-based
Interactions by Demonstration with Direct
Manipulation and Pattern Recognition. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’07), 145–154.
https://doi.org/10.1145/1240624.1240646

17. Björn Hartmann, Scott R. Klemmer, Michael
Bernstein, Leith Abdulla, Brandon Burr, Avi
Robinson-Mosher, and Jennifer Gee. 2006. Reflective
Physical Prototyping Through Integrated Design, Test,
and Analysis. In Proceedings of the 19th Annual ACM
Symposium on User Interface Software and
Technology (UIST ’06), 299–308.
https://doi.org/10.1145/1166253.1166300

18. Caitlin Kelleher and Randy Pausch. 2005. Stencils-
based tutorials: Design and evaluation. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’05), 541–550.
https://doi.org/10.1145/1054972.1055047

19. Juho Kim. 2015. Learnersourcing: Improving Learning
with Collective Learner Activity. PhD thesis,
Massachusetts Institute of Technology.

20. Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J.
Guo, Robert C. Miller, and Krzysztof Z. Gajos. 2014.

Crowdsourcing Step-by-step Information Extraction to
Enhance Existing How-to Videos. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14), 4017–4026.
https://doi.org/10.1145/2556288.2556986

21. Jarrod Knibbe, Tovi Grossman, and George
Fitzmaurice. 2015. Smart Makerspace: An Immersive
Instructional Space for Physical Tasks. In Proceedings
of the 2015 International Conference on Interactive
Tabletops & Surfaces (ITS ’15), 83–92.
https://doi.org/10.1145/2817721.2817741

22. Benjamin Lafreniere, Andrea Bunt, and Michael Terry.
2014. Task-centric interfaces for feature-rich software.
In Proceedings of the 26th Australian Computer-
Human Interaction Conference (OZCHI ’14), 49–58.

23. Benjamin Lafreniere, Tovi Grossman, Fraser
Anderson, Justin Matejka, Heather Kerrick, Danil
Nagy, Lauren Vasey, Evan Atherton, Nicholas Beirne,
Marcelo H. Coelho, Nicholas Cote, Steven Li, Andy
Nogueira, Long Nguyen, Tobias Schwinn, James
Stoddart, David Thomasson, Ray Wang, Thomas
White, David Benjamin, Maurice Conti, Achim
Menges, and George Fitzmaurice. 2016. Crowdsourced
Fabrication. In Proceedings of the 29th Annual
Symposium on User Interface Software and
Technology (UIST ’16), 15–28.
https://doi.org/10.1145/2984511.2984553

24. Benjamin Lafreniere, Tovi Grossman, and George
Fitzmaurice. 2013. Community enhanced tutorials:
Improving tutorials with multiple demonstrations. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13), 1779–1788.
https://doi.org/10.1145/2470654.2466235

25. Wei Li, Tovi Grossman, and George Fitzmaurice.
2012. GamiCAD: A Gamified Tutorial System for
First Time Autocad Users. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’12), 103–112.
https://doi.org/10.1145/2380116.2380131

26. Will McGrath, Daniel Drew, Jeremy Warner, Majeed
Kazemitabaar, Mitchell Karchemsky, David Mellis,
and Björn Hartmann. 2017. Bifröst: Visualizing and
Checking Behavior of Embedded Systems Across
Hardware and Software. In Proceedings of the 30th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’17), 299–310.
https://doi.org/10.1145/3126594.3126658

27. David A. Mellis, Leah Buechley, Mitchel Resnick, and
Björn Hartmann. 2016. Engaging Amateurs in the
Design, Fabrication, and Assembly of Electronic
Devices. In Proceedings of the 2016 ACM Conference
on Designing Interactive Systems (DIS ’16), 1270–
1281. https://doi.org/10.1145/2901790.2901833

28. Alok Mysore and Philip J. Guo. 2017. Torta:
Generating Mixed-Media GUI and Command-Line

App Tutorials Using Operating-System-Wide Activity
Tracing. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and
Technology (UIST ’17), 703–714.
https://doi.org/10.1145/3126594.3126628

29. Susan Palmiter, Jay Elkerton, and Patricia Baggett.
1991. Animated demonstrations vs written instructions
for learning procedural tasks: a preliminary
investigation. Int. J. Man-Mach. Stud. 34, 5: 687–701.
https://doi.org/10.1016/0020-7373(91)90019-4

30. Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue
Wang, Lubomir Bourdev, Shai Avidan, and Michael F.
Cohen. 2011. Pause-and-play: automatically linking
screencast video tutorials with applications. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology (UIST ’11),
135–144. https://doi.org/10.1145/2047196.2047213

31. Vidya Ramesh, Charlie Hsu, Maneesh Agrawala, and
Björn Hartmann. 2011. ShowMeHow: translating user
interface instructions between applications. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology (UIST ’11),
127–134. https://doi.org/10.1145/2047196.2047212

32. Eldon Schoop, Michelle Nguyen, Daniel Lim, Valkyrie
Savage, Sean Follmer, and Björn Hartmann. 2016.
Drill Sergeant: Supporting Physical Construction
Projects Through an Ecosystem of Augmented Tools.
In Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems
(CHI EA ’16), 1607–1614.
https://doi.org/10.1145/2851581.2892429

33. Hyungyu Shin, Eun-Young Ko, Joseph Jay Williams,
and Juho Kim. 2018. Understanding the Effect of In-
Video Prompting on Learners and Instructors. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’18), 10 pages.

34. Evan Strasnick, Maneesh Agrawala, and Sean Follmer.
2017. Scanalog: Interactive Design and Debugging of
Analog Circuits with Programmable Hardware. In

Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17),
321–330. https://doi.org/10.1145/3126594.3126618

35. Robin Tuck and Dan R. Olsen. 1990. Help by guided
tasks: utilizing UIMS knowledge. In Proceedings of
the SIGCHI conference on Human factors in
computing systems: Empowering people (CHI ’90),
71–78. https://doi.org/10.1145/97243.97254

36. Christian Weichel, Jason Alexander, Abhijit Karnik,
and Hans Gellersen. 2015. SPATA: Spatio-Tangible
Tools for Fabrication-Aware Design. In Proceedings
of the Ninth International Conference on Tangible,
Embedded, and Embodied Interaction (TEI ’15), 189–
196. https://doi.org/10.1145/2677199.2680576

37. Joseph Jay Williams, Juho Kim, Anna Rafferty,
Samuel Maldonado, Krzysztof Z. Gajos, Walter S.
Lasecki, and Neil Heffernan. 2016. AXIS: Generating
Explanations at Scale with Learnersourcing and
Machine Learning. In Proceedings of the Third (2016)
ACM Conference on Learning @ Scale (L@S ’16),
379–388. https://doi.org/10.1145/2876034.2876042

38. Te-Yen Wu, Bryan Wang, Jiun-Yu Lee, Hao-Ping
Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku,
Ming-Wei Hsu, Yu-Chih Lin, and Mike Y. Chen.
2017. CircuitSense: Automatic Sensing of Physical
Circuits and Generation of Virtual Circuits to Support
Software Tools. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’17), 311–319.
https://doi.org/10.1145/3126594.3126634

39. Codecademy - learn to code, interactively, for free.
Codecademy. Retrieved April 5, 2018 from
https://www.codecademy.com/

40. Khan Academy. Khan Academy. Retrieved April 5,
2018 from http://www.khanacademy.org

	ElectroTutor: Test-Driven Physical Computing Tutorials
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Interactive Tutorials
	Electronics Design and Debugging Tools

	TEST-DRIVEN PHYSICAL COMPUTING TUTORIALS
	Design Considerations
	Taxonomy of Tests for Physical Computing Tutorials
	Test Setup
	Test Verification
	Test Domain

	ELECTROTUTOR
	Instruction Panel
	Development Panel
	Testing Panel
	Test Types
	Tutorial and Test Authoring

	IMPLEMENTATION
	EVALUATION
	Study Design
	Study Procedure
	Participants

	RESULTS
	Tutorial completion and task times
	Knowledge transfer and learning
	User confidence and subjective assessments

	DISCUSSION AND FUTURE WORK
	Tools for Tutorial Authors
	Extending the “Discount Sensing” Approach
	Hardware Simulations
	Generalizing to Other Domains, More Complex Projects
	Limitations

	CONCLUSION
	REFERENCES

