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ABSTRACT 
A wide variety of tools for creating physical computing 
systems have been developed, but getting started in this 
domain remains challenging for novices. In this paper, we 
introduce test-driven physical computing tutorials, a novel 
application of interactive tutorial systems to better support 
users in building and programming physical computing 
systems. These tutorials inject interactive tests into the 
tutorial process to help users verify and understand 
individual steps before proceeding. We begin by presenting 
a taxonomy of the types of tests that can be incorporated into 
physical computing tutorials. We then present ElectroTutor, 
a tutorial system that implements a range of tests for both the 
software and physical aspects of a physical computing 
system. A user study suggests that ElectroTutor can improve 
users’ success and confidence when completing a tutorial, 
and save them time by reducing the need to backtrack and 
troubleshoot errors made on previous tutorial steps. 
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INTRODUCTION 
A variety of toolkits for building physical computing systems 
have been developed, but starting out in this domain can be 
daunting for novices. The process of going from schematics 
and code posted on the web to a functional system is fraught 
with pitfalls, and step-by-step tutorials can lead users to 
perform actions without fully understanding their intention. 
Research in this area has shown that starting out in this 
domain remains difficult, with many students and hobbyists 
struggling to realize control over their designs [4, 27]. At the 
extreme, Booth et al. showed that less than one third of 
participants could complete a simple Arduino assembly task 
[4]. To address these challenges, recent work has focused on 
supporting development [1, 16, 17] and debugging [9, 26, 34, 
38] of embedded systems, but there has been little work 
improving upon the format of tutorials for physical 
computing projects. 

In the software learning literature, there have been many 
advancements in interactive tutorials designed to make them 
more engaging and increase users’ success. Of particular 
promise, reactive tutorial systems [10, 30] can respond to a 
user’s actions, automatically progress through steps upon 
completion of instructions, and provide error correction and 
guidance in response to detecting problems. However, these 
techniques are difficult to extend to physical computing 
projects, which integrate both software and physical 
subtasks, thus complicating user activity tracking. 

In this paper, we introduce test-driven physical computing 
tutorials, a new approach that is inspired by test-driven 
development practices in software engineering [2]. These 
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Figure 1: The ElectroTutor interface. The system provides step-by-step tutorials (a) for physical computing projects, a code 
editing panel (b) and integrated tests used to verify that each step was completed successfully (c).  
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tutorials include interactive tests on each step, requiring the 
user to verify wiring, electronics, code, or their own 
knowledge before they can proceed to subsequent steps. 
Test-driven tutorials can include validations that are both 
automatically carried out by the system, or manually by the 
user. Involving the user in the validation process has the 
additional potential benefit of increasing the user’s 
engagement and comprehension of individual tutorial steps. 

The main contribution of this work is in applying the test-
driven approach to physical computing tutorials. 
Specifically, we contribute a taxonomy of test types for this 
domain across three dimensions: the domain being tested 
(physical or software), how the test is set up, and how the test 
is verified. We then explore the breadth of this taxonomy in 
ElectroTutor, our prototype system. ElectroTutor’s interface 
is divided into three panels – one for the tutorial instructions 
(Figure 1a), one for the coding environment (Figure 1b), and 
one for the interactive tests (Figure 1c). Users go through the 
tutorial steps as in any other tutorial, but must successfully 
complete the interactive tests on each step before proceeding. 

Finally, we contribute an initial user study comparing 
ElectroTutor to an equivalent baseline tutorial without 
interactive tests. Our results show that the addition of tests 
enables users to complete tutorials with fewer instances of 
backtracking to troubleshoot and fix problems introduced on 
previous steps. Our results also suggest that this approach 
may be able to decrease task completion time and increase 
task success rate. 

We conclude the paper by discussing limitations and areas 
for future work, including authoring environments for test-
driven tutorials, and applications to other domains. 
RELATED WORK 
Test-driven physical computing tutorials are related to two 
main areas of prior research in the HCI literature – interactive 
tutorials, and tools for electronics design and debugging. 
Interactive Tutorials 
Early HCI research recognized the challenges of developing 
effective learning materials for software systems, and 
suggested the benefits of minimalist and task-centered 
learning materials [5, 6, 35]. Subsequent work explored the 
benefits of animated and multi-media assistance [8, 15, 29, 
30] and demonstrated that these techniques can help illustrate 
dynamic operations, but can also enforce a passive learning 
process and force users to work at the pace of the video 
demonstration [14]. The Pause-and-Play system addresses 
this limitation by automatically pacing video playback in 
response to a user’s progress through the tutorial [30]. 

More recently, a range of tutorial systems have been 
proposed that integrate directly with the software being 
learned [3, 8, 10, 18, 22, 24, 25, 28, 30, 31], to tightly link 
learning materials with the content being taught, and to 
provide reactive features that respond to the tutorial user’s 
actions. For example, Stencils-based tutorials [21] present 
instructions within an application, and ensured users perform 

the correct behavior by overlaying a stencil onto the user 
interface. Fernquist et al. [10] later defined a design space for 
interactive tutorial systems based on their scope (teaching 
individual features, lower-level tasks, or higher-level 
content-centric workflows) and their interactivity (passive 
presentation of learning materials, active mechanisms that 
allow users to try out concepts, and reactive tutorials that are 
aware of a user’s interactions and can respond to them). 
ElectroTutor represents a content-centric reactive tutorial 
system, where the tasks involve physical computing projects, 
consisting of both a software programming component and a 
physical electronics component. 

A number of interactive tutorial systems have been 
developed for tasks that include working in the physical 
world [21, 23, 32, 36]. ElectroTutor builds on this body of 
work, with a focus on how physical computing tutorials can 
be made reactive by adding tests that validate that the user is 
on the right track, or prompt them to debug the project as 
they build it. 

The idea of test-driven learning has also been embraced by 
the online education community, with studies showing the 
benefits of having students complete quizzes [11] or prompts 
to explain what they are learning [7]. For instance, 
Codecademy includes evaluation and knowledge 
reinforcement directly into the process of working through 
lessons [39], and Khan Academy incrementally adjusts the 
tests they provide based on a user’s progress and success on 
quizzes [40]. In the HCI domain, recent work has 
investigated the potential of in-video prompting – presenting 
questions to learners during video playback to prompt 
reflection on the content, and to elicit more specific feedback 
on course materials for instructors [33]. The tests in our 
system share the goal of prompting a deeper understanding 
of the material being taught. However, our tests also serve 
other functions, such as validating that steps are completed 
correctly, and providing specific corrective feedback to the 
user in response to common mistakes. 
Electronics Design and Debugging Tools 
Prior work has shown that novice users face substantial 
difficulty in designing and building physical computing 
systems. Studies by Booth et al. and Mellis et al. asked 
novices to construct simple electronics projects and 
documented the challenges they faced [4, 27]. These studies 
revealed that novice users can run into trouble choosing the 
correct components, wiring components together, 
programming logic and variables, and debugging of 
hardware and software components. 

Several research systems have been developed to address 
these challenges. Toastboard [9] is an intelligent breadboard 
that assists novices with debugging through LED indicators 
on the board itself, and a software interface that provides 
troubleshooting tips. Bifröst [26] instruments both the 
hardware and software components of embedded computing 
projects to help users trace the state of the system and assists 
in debugging. Trigger-Action Circuits [1] enables users to 



 

specify desired functionality at a behavioral level, and 
generates designs and corresponding instructions for 
assembling them. Finally, a number of systems have been 
developed that aid in sensing the state of the electronics 
components in embedded systems [9, 34, 38], data which 
could aid in debugging and troubleshooting. 

Whereas many of the above systems are focused on 
developing novel hardware and sensing techniques, our work 
investigates how such sensing can be used to enable reactive 
tutorials for physical computing projects. We also adopt a 
“discount sensing” approach, using unused pins from the 
project’s Arduino board, or an additional off-the-shelf 
Arduino board for targeted probing. In the short term, this 
could extend the reach of reactive tutorials into the physical 
computing domain, while some of the improved sensing 
technologies described above continue to develop. 
TEST-DRIVEN PHYSICAL COMPUTING TUTORIALS 
Test-driven development (TDD) is a software development 
process that involves the repetition of short development 
cycles in which functional requirements are turned into 
specific test cases, and the software is then improved to pass 
these tests [2]. The idea is to keep individual development 
cycles simple and keep the developer focused on meeting 
specific functional requirements. 

Test-driven physical computing tutorials adapt the general 
philosophy of TDD to tutorial systems. Specifically, the idea 
is to add tests to individual steps of a tutorial to focus the 
user’s effort on meeting a set of requirements for that step. 
These could be functional requirements (i.e., validating that 
the step has been performed correctly), or learning 
requirements (i.e., validating that user has learned certain 
information, or prompting reflection on the actions 
performed in a step). One goal is to prevent a user from 
reaching the end of a tutorial and finding that the device they 
have built does not work. Diagnosing the source of this kind 
of failure can be frustrating and difficult [4]. A secondary 
goal is to avoid the scenario where the user reaches the end 
of the tutorial and has a working system, without a full 
understanding of what they did to make it work. 

As a starting point for developing a test-driven tutorial 
approach, we considered the design space of how tests could 
be integrated into tutorial steps, and the roles they could play. 
Design Considerations 
Below are a set of important considerations related to how 
tests could be integrated into tutorials. 

Purpose. Tests can serve a range of purposes, including 
evaluating the user’s knowledge, emphasizing certain 
information to the user, or validating that a step is completed 
correctly. In ElectroTutor, we focus on the purposes listed 
above, but we also see potential for tests to be used to provide 
feedback or data to the tutorial author, or to an instructor, an 
idea which has seen some exploration in recent work [33]. 

Authoring. Another consideration is how tests will be 
authored. In ElectroTutor we adopt a model where the 

tutorial author creates the tests for a step, based on their 
understanding of the functional and learning requirements 
for that step. However, there may be advantages to enabling 
tutorial users, or their peers, to create tests as well, with the 
intent of prompting a deeper reflection and understanding of 
the tutorial content. 

Guidance. In TDD, tests typically pass or fail, but given the 
broader set of intents for tests in test-driven tutorials, tests 
could provide a range of different types of guidance to users 
(e.g., visualizing the system state to promote deeper 
understanding, or providing specific corrective feedback or 
debugging tips in response to certain conditions). We include 
a number of these approaches in ElectroTutor. 

Adaptivity. Finally, tests can be adaptive, being included on 
a step depending on a model of the user’s knowledge, or 
results and measurements from previous tests. Tests could 
also be included for a randomly-selected subset of users, to 
sample the knowledge of a larger group. In ElectroTutor, we 
adopt a fixed set of tests that all users must pass, but we view 
adaptive testing as an interesting area for future work. 
Taxonomy of Tests for Physical Computing Tutorials 
The above set of dimensions provide a general design space 
for test-driven tutorials. Next, we consider a more specific 
taxonomy of test types for physical computing tutorials. The 
dimensions of this taxonomy include how the test is 
initialized (Test Setup), how it is verified (Test Verification), 
and the domain of the test (Test Domain). Figure 2 illustrates 
this taxonomy, resulting in 10 unique test classes. 

Test 
Setup 

Test 
Verification 

Test Domain 
Software Physical 

Manual 
Manual SM,M PM,M 

Automatic SM,A PM,A 

Automatic 
Manual SA,M PA,M 

Automatic SA,A PA,A 

None 
Manual SN,M PN,M 

Automatic 
Reactive tutorial systems, e.g.: 

[10, 30] [21, 32] 
Figure 2. A taxonomy of tests that can be used within test-
driven tutorials for physical computing. The ten resulting 
test classes are numbered for later reference. 

Test Setup 
The setup up or initialization for a test can be manual, 
automatic, or none. 

Manual: In the case of manual setup, the user is required to 
perform additional actions (beyond those required by the 
tutorial step) before the test is performed. For example, the 
user may be asked to place probes on a specific hardware 
component or pin, select a block of code, or manually engage 
a sensor that will be used by the test. This has the advantage 
of engaging the user in the testing process, but also has a 
potential downside in that these setup actions could introduce 
additional errors (e.g., if the user places probes incorrectly). 



 

Automatic: With automatic setup, the system automatically 
performs any required initialization steps for the test, 
potentially behind-the-scene without the user’s knowledge. 
For example, test code could be injected onto a board to test 
if an LED is functioning or inserted properly. Automatic 
setup has the advantage that it may be less error prone than 
having the user manually perform these actions. 

None: In some cases, no setup is required for a test beyond 
completing the current step of the tutorial. This is the case 
with many reactive tutorial systems, where the tutorial 
system simply confirms that the user has performed a 
required instruction (e.g., testing if they selected a specified 
tool). This class of test also includes those that don’t measure 
anything from the hardware or software (e.g., a test that asks 
the user to respond to a question to test their knowledge, or a 
test that asks the user to confirm that a certain outcome 
resulted from the current step of the tutorial). 
Test Verification  
In addition to the setup of a test, the verification of the test 
can also vary, being either manual or automatic. Verification 
cannot be none as we require tests to pass before allowing a 
user to proceed to a subsequent step. 

Manual: In some cases, it can be advantageous to have the 
user evaluate the success of a test. For example, the user 
could answer a question “Does the light turn on when you 
press the button”. We adopt this approach in ElectroTutor to 
address cases in physical computing tutorials that are 
difficult to sense automatically, and cases where manual 
verification may assist with knowledge retention. This helps 
avoid the need for specialized hardware or instrumentation. 

Automatic: In TDD, tests are typically fully automatic, with 
the system evaluating whether certain conditions are met. 
For tests in tutorials, the system could similarity evaluate 
whether certain conditions hold and a test has passed. This 
type of test may require the system to watch for specific 
condition as the hardware runs, or verify that a variable is set 
to a specified value at runtime. 
Test Domain 
An interesting aspect of physical computing tutorials is that 
they contain steps related to both software and physical 
electronics. As such, the domain of tests can be either 
software or physical. 

Software: Software tests are concerned with the software 
component of the physical computing project being built, or 
aspects of the development environment being used to write 
code for the project. For example, testing that required code 
for a certain step has been entered properly, that a variable 
takes on an expected value during runtime, or that the user 
understands what a specific line of code is used for. 

Physical: Physical tests are concerned with the physical and 
electronic components of the system being built, such as 
whether hardware has been inserted and wired properly, or 
physical components are functioning as expected. 

ELECTROTUTOR 
ElectroTutor is a tutorial system that merges traditional step-
by-step tutorial content with interactive verification tests. 
The interface for ElectroTutor, consists of static instructional 
content (Figure 1a), an Arduino-like integrated development 
environment (Figure 1b), and an interactive testing panel 
(Figure 1c). We discuss each of these components in turn. 
Instruction Panel 
The instruction panel displays the current step’s instructions 
to the user in text with associated images or short videos. 
‘Next’ and ‘Back’ buttons enable the user to navigate 
through the steps of the tutorial. However, for steps with 
associated tests, the user can only proceed once the tests for 
that step have been passed. Until all tests have been passed, 
the next button is disabled and a message is displayed to 
complete the tests before progressing (Figure 3). 

 
Figure 3. Users are prompted to complete the tests 
associated with the current step before proceeding. 

Development Panel 
The development panel provides an integrated Arduino-like 
IDE, with compile and upload buttons, a code editing area, 
and an output panel. At the start of the tutorial, the IDE is 
initialized with the standard empty setup() and loop() 
functions. At any time, the user can edit code and compile or 
upload it to the connected Arduino board for the project 
being assembled. 
Testing Panel 
The testing panel displays any associated tests for the current 
step. Individual tests are expanded when the user starts a 
step, and are automatically collapsed once completed. Each 
test provides instructions to the user, and may include 
interactive widgets for the user to interact with as part of 
performing the test. A check mark icon or ‘X’ icon indicate 
if each individual test has been passed or failed (Figure 4). 

 
Figure 4. A step with two tests. The first test is collapsed, 
with a green check mark indicating it has passed. An ‘X’ 
icon indicates the second test has failed, and a custom error 
message is displayed. 

Tests can display custom-authored error or feedback 
messages when the test fails (e.g., to provide corrective 
feedback), and the user can repeat a test as many times as 



 

they wish until it has passed. When all tests for a step have 
been successfully passed, the user can proceed to the next 
step (Figure 5). 

 
Figure 5. The user can proceed once all tests have passed. 

Test Types 
ElectroTutor implements a set of tests that exemplify the 
various test types defined in our taxonomy (Figure 2). For 
some test types, the system uses an auxiliary circuit probe 
device, consisting of an Arduino Uno in a 3D printed case, 
to record physical measurements (Figure 6). Alternately, 
unused input pins on the project’s Arduino board could be 
used for this purpose. In this section, we describe the range 
of tests implemented in the system, referring to example tests 
used in a “Light-Sensitive Alarm” project described later in 
the paper. 

 
Figure 6. A secondary Arduino Uno was used as a circuit 
probe device (e.g., for physical tests with manual setup). 

SM,M, PM,M: Confirmation Tests: For a Confirmation Test, 
users manually execute a specified action, and then report the 
outcome using a multiple choice or yes/no prompt (Figure 
7). The action the user is instructed to perform could be in 
the software or hardware components of the project. 

 
Figure 7. A confirmation test asks the users to manually 
report the result of a specified action. 

SM,A: Compile, Upload, and Code Selection Tests. The 
Compile and Upload tests are used to test the user’s code. 
When run, the test compiles or uploads the user’s code to the 
project’s Arduino board. The system automatically detects if 
the operation is successful. If these tests fail, the user is 
shown a sanitized error message from the compiler, along 
with any custom messages that the author has added to the 
test (e.g., to suggest troubleshooting steps). 

In the Code Selection Test, the user is prompted to highlight 
a portion of their code. For example, one such test in our 
tutorial asks the user to “Highlight the part of your code 
which turns on the buzzer”, which would only pass when the 
user highlights code containing the string tone(buzzer, 
freq, 10) (Figure 8). 

 
Figure 8. A Code Selection Test. (a) The user is prompted to 
highlight a section of code; (b) The user highlights the code 
in the editor; (c) The code is displayed in the test pane and 
the user clicks to check their response. 

PM,A: Voltage, Frequency, & Continuity Tests. For these 
tests, the user takes voltage, frequency, or continuity 
measurements using the circuit probe device. The system 
tests the readings from the probe device against a reference 
value (or a value range) that has been pre-authored by the 
tutorial author. When the test is started, code is sent to the 
circuit probe, configuring it to sense the relevant attribute. 
The measurement is shown graphically in real-time, and the 
test passes when the expected value is achieved (Figure 9). 

 
Figure 9. For a voltage test, (a) the user is prompted to 
attach the circuit probe device to the circuit (b), and run the 
test. (c) Measurements are then displayed, and the test 
passes when the expected value is read. 

SA,M: Manual Variable Test. When the user initiates this test, 
their code is automatically instrumented to monitor select 
variable data at runtime, and the instrumented code is 



 

uploaded to the project’s Arduino board. The user is shown 
a visualization of the data trace and asked to confirm that it 
matches the expected pattern, which is pre-specified by the 
tutorial author.  

PA,M: Auto-Upload Test. This test is used to assess whether a 
hardware or circuit component of the system has been 
properly built, before the user writes associated code for that 
part of the project. When the user initiates this test, the 
system uploads pre-authored code to the project board. The 
user then manually verifies that the component performs as 
expected. For example, the user might verify that a Piezo 
buzzer makes the expected sound when the test is executed 
(Figure 10). This allows the user to confirm that a physical 
component is working as expected, before writing code or 
integrating additional parts. 

 
Figure 10. The Auto-Upload test uses pre-authored code to 
validate hardware components of the project. 

SA,A: Auto-Variable Test. As in the manual variable test, this 
test instruments the user’s code to track variable data at 
runtime. The tutorial system then monitors the instrumented 
variables to confirm that they pass pre-authored test cases. 
These tests can track multiple variables, record which line 
number variables are changed on, and can use both strict 
equality and range inclusion validation techniques. 

PA,A: Auto-Sense Test. In this test, the system uploads code 
to read measurements from the project board’s pins. For 
example, this could be used to test that a sensor has been 
properly connected to the project board. The system 
performs configuration, measurement, and verification 
automatically. Based on any deviations from expected 
values, the system can provide feedback on why the test 
failed, or troubleshooting tips from the tutorial author. 

 
Figure 11. Knowledge tests are used to test the user’s 
comprehension of concepts within a step. 

SN,M, PN,M: Knowledge Tests: In the Knowledge Test, the user 
answers knowledge-based questions related to the tutorial 
content (Figure 11). If a question is answered incorrectly, 
users are presented with corrective guidance pre-authored by 
the tutorial author. 
Tutorial and Test Authoring 
In the current version of ElectroTutor, tutorial content and 
tests are manually authored in human-readable YAML-
formatted configuration files. Each test is represented by an 
entry specifying the type of test (e.g., voltage threshold test), 
instructional text to show to the user (to specify the intent of 
the test and any necessary setup instructions), and a set of 
test-specific parameters (e.g., the threshold voltage). This 
corresponds to the simple design of the tests in the interface, 
which include a title, a short instruction to the user, and the 
interface for running the test. Finally, an optional “on error” 
message can be included for tests, which is shown to the user 
if the test fails (e.g., to provide suggestions for debugging). 
Though we did not develop a graphical interface for creating 
tests, it would be straightforward to do so, because each type 
of test follows a simple structured format with a small 
number of parameters. 

Tutorial content is also represented in structured 
configuration files, with each step specified in the Markdown 
format, which is rendered into HTML for the interface. 
IMPLEMENTATION 
The overall system architecture for ElectroTutor is shown in 
Figure 12. The client-side user interface was built using 
JavaScript and React.js, server-side data management was 
done with Ruby on Rails, and serial port communication with 
the attached Arduino devices are processed with the 
SerialPortJSONServer tool1. 

 
Figure 12. ElectroTutor system architecture. 

To support tests that observe the runtime values of variables 
on the project’s Arduino board, we developed a custom 
instrumentation tool that parses and modifies the user’s code 
before it is uploaded to the board. The parser detects variable 
definitions and assignment statements for variables of 
interest for a test, and inserts Serial.print() statements that 
include the variable being assigned, the value being assigned, 
and the line number on which the assignment took place. 
These logging statements are transmitted over the serial 
connection and read by the tutorial system during runtime. 

1 https://github.com/johnlauer/serial-port-json-server 

 

 

 



 

The instrumentation approach above poses a runtime 
performance overhead. To reduce this, a variable’s identifier 
is mapped to a numeric index before being sent over the 
serial port, which is then mapped back to the variable’s name 
by the tutorial system, reducing the amount of data that needs 
to be sent over the serial connection. 

For tests that make physical measurements of the circuit 
being built, we use a secondary Arduino Uno board enclosed 
in a simple 3D printed case, with two probes exposed (Figure 
6). Voltage measurements are performed using the 
analogRead() function from the Arduino internal library. 
This circuit probe device was inspired by the physical 
interface of a multimeter, which can perform a wide range of 
measurements with two simple probes. The circuit probe is 
flashed with different code based on the test the user runs, 
allowing it to serve as a voltmeter, frequency analyzer, and 
electrical continuity checker. 
EVALUATION 
To evaluate the effectiveness of the interactive tests 
implemented in ElectroTutor, and to gain initial insights into 
the test-driven tutorial approach more generally, we 
conducted a user study comparing our prototype system to a 
comparable tutorial without tests. 
Study Design 
The study followed a between-subjects design, with half of 
participants in an experimental condition, and the other half 
in a control condition. All participants performed a tutorial 
for the same physical computing project, but the test-driven 
features were only available in the experimental condition. 
Specifically, in the control condition, tests were not included 
for the tutorial steps, and the participant was free to progress 
through the tutorial steps as they wished. In the experimental 
condition, participants were presented with tests for many of 
the steps, and were restricted from progressing to the next 
step until all the tests for that step had been passed. 

We designed the physical computing project and tutorial to 
ensure that participants in both conditions were exposed to 
the same instructional content. While tests may force 
experimental participants to consider one aspect of the 
tutorial, they did not introduce any additional information 
beyond that available to the control participants. 
Study Procedure 
The study began with an overview of the ElectroTutor 
interface. Participants in the experimental condition were 
also introduced to the circuit probe device, and given a 
simple demo of an interactive test. The participant was then 
given a maximum of 45 minutes to complete the tutorial. 

Tutorial Project. The tutorial project was to build a light-
sensitive alarm clock system with a reset trigger (Figure 13). 
The project included both electronics and programming 
components. The tutorial instructions and associated tests for 
each step are included in our supplementary materials. 

Post-study questionnaire. Following the tutorial portion of 
the study, participants answered a post-study questionnaire 

which included Likert-scale ratings of their confidence 
working through the electronics and programming parts of 
the tutorial, what they learned from the tutorial, and how they 
liked using the system. Participants in the experimental 
condition also answered additional questions on the 
interactive tests. To evaluate whether there was a difference 
in how much participants learned in the two conditions, we 
included knowledge-based questions about the electronics 
and programming aspects of the tutorial, from a selection of 
concepts that were covered in the tutorial content. 

 
Figure 13. The completed Light Sensitive Alarm, consisting 
of an LED ring, light sensor, buzzer, and a reset button. 

Participants 
We recruited 12 participants (10 male, 2 female, ages 20-54, 
mean 34, SD 11) through an email to employees at a large 
software company. Participants were screened to ensure that 
they had minimal experience with physical computing, and 
were given a $25 gift card as thanks for participating. 
RESULTS 

Tutorial completion and task times 
Overall, 5/6 participants completed the tutorial in the 
experimental condition, versus 3/6 in the control condition. 
In terms of timing, participants in the experimental condition 
had faster tutorial completion times on average 
(Experimental: mean 39.7 minutes (SD 6.8), Control: mean 
41.5 (SD 4.3)). A t-test did not show this difference to be 
significant (p=0.59). However, it is worth noting that these 
times include the time taken to run tests for participants in 
the experimental condition, which may suggest that the tests 
enabled participants to spend less time working through the 
tutorial instructions. 

In terms of how participants progressed through the tutorial, 
Figure 14 shows a timeline of participants’ navigation 
through the tutorial steps. We can see that participants in the 
control condition exhibited much more backtracking to 
previous steps, as compared to the experimental condition 
where participants proceeded linearly through the steps. 
Analyzing the number of instances where participants 



 

backtracked to a previous step, we found an average of 18.8 
(SD 19.3) instances in the control condition, versus an 
average of 0.2 (SD 0.4) for the experimental condition. A 
two-sample t-test found this difference to be significant 
(t(10)=-2.37, p<.05). Note that the participants in the 
experimental condition were not restricted from 
backtracking to previous steps, and there was no penalty for 
doing so – they simply chose not to. 

 
Figure 14. Timeline of participants’ step navigation over the 
study session (blue=control, red=experimental). 

From observing participants in the control condition, and 
discussions with them at the end of the study, backtracking 
was often used in response to discovering that part of the 
project from a previous step was not working. The 
participant would then backtrack to the instructions for the 
broken part, and engage in troubleshooting to try and get it 
working. This provides validation for the inclusion of tests 
as a means of verifying that each step is completed correctly 
before allowing the user to move on. 
Knowledge transfer and learning 
In the post-study questionnaire, we included a set of four 
knowledge tests based on the tutorial content. On average, 
participants in the experimental condition answered 2.8/4 
(SD 0.8) of these questions correctly, versus 2.0/4 (SD 1.0) 
for the control condition. A t-test did not show this difference 
to be significant (p=0.16). 
User confidence and subjective assessments 
To understand how the addition of tests affected participants’ 
confidence while completing the tutorial, we analyzed their 
responses to questions in the post-study questionnaire on 
their confidence with the electronics and programming 
portions of the tutorial (Figure 15). Overall, confidence 
appears to be slightly higher for participants in the 
experimental condition. 

   
Figure 15. Participants’ responses to the confidence 
questions in the post-study questionnaire. 

 
Figure 16. Subjective ratings provided by participants in 
the experimental condition. 

We asked participants in the experimental condition to 
answer several additional questions on the effect of the 
interactive tests on the tutorial experience (Figure 16). 
Overall, the results are encouraging, with 5/6 participants 
indicating strong agreement that the tests increased their 
confidence that they were doing each step correctly. 
Participants also provided favorable ratings for the tests 
being fun, and helping them to understand the tutorial 
content. Finally, all participants disagreed with the statement 
“working through the tests was frustrating”. 

The above ratings were consistent with participants’ 
feedback on the tutorial system. In particular, one participant 
in the experimental condition cited the inclusion of tests 
throughout the tutorial as helping his confidence: 

The tests were definitely helpful. I especially liked the fact that 
tests were done in a granular manner at each step along the 
tutorial, so that I felt confident throughout the tutorial. 

Conversely, a participant in the control condition expressed 
that while following the instructions she was uncertain about 
whether she was doing things correctly: 

I struggled with the hardware part, I was not that familiar with 
it. It’s kind of like, I am following the instructions but I am just 
not sure if I am doing it the right way. 

Overall, these findings suggest that the inclusion of tests can 
increase participants’ confidence while working on a tutorial. 
DISCUSSION AND FUTURE WORK 
The results from our study are promising – users of 
ElectroTutor appreciated the added tests, and indicated that 
the system increased their confidence that they were 
completing the tutorial steps correctly. Our analysis also 
indicates that the test-driven approach enabled users to 
diagnose problems immediately, preventing situations where 
they may have to backtrack to try and understand why a 
problem is occurring and troubleshoot a solution. 
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In this section, we discuss areas for further developing the 
test-driven physical computing tutorials approach, and 
limitations of the current work. 
Tools for Tutorial Authors 
This paper has looked at test-driven tutorials from the 
perspective of users, with the tutorial task and its associated 
tests hard-coded into the system. An important area for future 
work is to consider how to support authors in creating test-
driven tutorials. 

As mentioned earlier in the paper, authoring of tests could be 
achieved through a simple interface for selecting the class of 
test to be added (e.g. voltage test), specifying parameter 
values (e.g., threshold of 5V), and adding supplementary 
photos (e.g., to indicate where to place testing probes). 

In addition to manual authoring, it is worth considering how 
the authoring of tests and tutorials could be automated. For 
example, text-recognition algorithms could analyze tutorial 
content and code to suggest tests that might be appropriate 
for a given step. For physical computing tutorials, one could 
also imagine a fully by-demonstration approach (similar to 
what has been developed for photo manipulation tutorials [8, 
14]), in which the author builds and programs a circuit in an 
instrumented Arduino development environment and circuit 
simulator, and a corresponding test-driven tutorial is 
automatically created. For the code component of tutorials, 
techniques for working with multi-stage code examples (e.g. 
[12]) could be adapted, and linked to the generated tests. 

Tests could also be generated through crowdsourcing [20] or 
learner sourcing [13, 19, 37] techniques. For example, each 
user who completes a tutorial could be asked to suggest their 
own tests, and the collection of these user-elicited tests could 
be aggregated and refined over time. 

In addition to supporting authors in creating tutorials, tools 
could be developed to support an author’s awareness of how 
a tutorial is being used, and the challenges that are being 
encountered by its users. For example, the results of tests 
from multiple users could be aggregated and reported in a 
tutorial analytics dashboard. The author could see which 
tests frequently fail, which may indicate unclear instructions, 
or a need for additional tests. Likewise, tests which never fail 
may be unnecessary, and could potentially be removed 
without diminishing the tutorial experience. 
Extending the “Discount Sensing” Approach 
Adding more sophisticated hardware sensing is another 
interesting direction for future work. While still falling well 
below the cost of logic analyzers and oscilloscopes, a higher 
resolution testing device could be constructed with an 
Arduino Mega board. Additional techniques could leverage 
computer vision to visually verify hardware configurations. 
For example, a webcam could be used to test expected 
behaviors, such as a light blinking or a servo motor moving.  

There is also an opportunity to use new forms of sensor-
enabled tools [21, 32, 36] to perform measurement tests in a 
semi-automated way. Past work has investigated the use of 

recording and replaying of electronic traces to facilitate the 
testing and development of electronics designs [17, 34]. With 
hardware platforms that have onboard DACs (such as the 
Arduino Due or Zero), the system could replay recorded 
traces from the tutorial author as inputs, and then verify the 
response of the system being built to that trace signal, 
highlighting and offering guidance to the user based on the 
differences between the expected and actual readings. 
Hardware Simulations 
Even with more sophisticated sensing, it will be difficult for 
a tutorial system to get a complete picture of what is going 
on in a physical circuit. An interesting extension of this work 
would be to integrate test-driven tutorials into a simulation-
based circuit design platform, where the tutorial and tests can 
fully measure the state and behavior of the circuit being built. 
Hardware simulations could also be used to build a database 
of symptoms associated with common wiring errors, to help 
with error diagnosis and providing recovery instructions. 
Generalizing to Other Domains, More Complex Projects 
Test-driven tutorials are particularly relevant for physical 
computing projects, given the challenge of instrumenting a 
circuit in the process of being built. However, we believe that 
there are additional benefits to the test-driven tutorial 
approach, such as user engagement and knowledge retention, 
that would make the approach appropriate for other tutorial 
domains as well. For example, test-driven tutorials could be 
created for complex software applications, or software 
development environments. In an image editor, the user 
could manually take a screenshot of the layer palette after a 
step, to confirm that they have set up the image layers 
appropriately. In an IDE, a user could run their code in debug 
mode, and answer test questions on the value of a watched 
variable. Ideally, engagement with the tests could help users 
to learn the skills of debugging unexpected behavior in these 
domains. 

We see potential for extending our approach to more 
complex tutorials as well. For large and complex physical 
computing tutorials, it may be valuable to add higher-level 
visualizations of the entire project, to give the user a view of 
the set of all tests, how they relate to the project and to one 
another, and to visualize the user’s progress as they work 
through the tutorial content. 
Limitations 
There are several limitations to our system and user study 
that are important to acknowledge, and that point to key areas 
for extending this research. 

First, in this work, the resolution, performance, and timing 
of hardware sensing were not key areas of emphasis. These 
capabilities of our system are limited by the capabilities of 
the Arduino Uno board we used as the circuit probe device. 
The resolution of the analog-digital convert on the Arduino 
Uno is 10 bits, which supports a resolution of 4.882 mV with 
a 5V power source, which may not be sufficient for testing 
precise electronic systems. This implementation decision 
also precludes taking accurate measurements outside of the 



 

0-5V reference range that the Uno supports, and affords only 
the standard voltage protection offered by the board when 
taking measurements. Integrating more sophisticated 
hardware sensing capabilities into this type of tutorial system 
is an interesting area for future work. 

Second, the approach we used to instrument the software 
running on the project board imposes a slowdown, due to the 
overhead of sending additional data over the serial 
connection. This is unlikely to be a problem for many 
physical computing projects that involve human interaction, 
where human input speed is the main bottleneck, but could 
limit the approach’s usefulness for timing-critical systems. 

Third, the collection of test types that we implemented in 
ElectroTutor was guided by our interest in covering all ten of 
the areas of our test taxonomy that are not covered by past 
work on reactive tutorial systems, and thus cannot be 
considered a comprehensive set of tests for the physical 
computing domain. An interesting area for future work 
would be to investigate more sophisticated types of tests for 
test-driven physical computing tutorial (e.g., tests that 
compare measurements against a pre-recorded signal trace, 
or check multiple conditions simultaneously). A key 
challenge in implementing new and more complex test types 
is keeping them easy to use and understand by the users of 
the tutorial. 

Finally, the sample size for our study was small. We elected 
to conduct a small-scale study to gain initial insights on the 
approach, but more comprehensive studies are needed to 
better understand the impact of this kind of tutorial on 
learners, and its longer-term effects on learning and skill 
development. It would also be valuable to test this type of 
tutorial system with a more diverse group of users, including 
participants who have more experience on the hardware side 
of physical computing, but less software and programming 
experience. 
CONCLUSION 
We have presented test-driven physical computing tutorials, 
a new type of tutorial system that integrates interactive tests 
into the tutorial experience. In addition to implementing this 
idea in ElectroTutor, we have described design 
considerations for this kind of system, and presented a 
taxonomy of different types of tests that could guide the 
development of future test-driven tutorial systems. Our study 
results indicate the promise and potential of test-driven 
tutorials, demonstrating that they can help users avoid 
backtracking to previous tutorial steps, and demonstrating 
that the interactive tests were appreciated by users. While our 
work focuses on physical computing tutorials, we have 
discussed how the test-driven tutorial approach could be 
applied in other domains, and outlined how our work can be 
extended, such as by developing authoring tools or 
integrating more sophisticated sensing techniques. 
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