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ABSTRACT
The Maker movement has encouraged more people to start
working with electronics and embedded processors. A key
challenge in developing and debugging custom embedded sys-
tems is understanding their behavior, particularly at the bound-
ary between hardware and software. Existing tools such as step
debuggers and logic analyzers only focus on software or hard-
ware, respectively. This paper presents a new development
environment designed to illuminate the boundary between em-
bedded code and circuits. Bifröst automatically instruments
and captures the progress of the user’s code, variable values,
and the electrical and bus activity occurring at the interface
between the processor and the circuit it operates in. This data
is displayed in a linked visualization that allows navigation
through time and program execution, enabling comparisons
between variables in code and signals in circuits. Automatic
checks can detect low-level hardware configuration and pro-
tocol issues, while user-authored checks can test particular
application semantics. In an exploratory study with ten par-
ticipants, we investigated how Bifröst influences debugging
workflows.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous
Author Keywords
embedded systems; debugging; IDE; visualization

INTRODUCTION
User-friendly embedded system prototyping tools such as the
Arduino platform [23] have exposed new classes of users to
programming and electronics as part of the Maker movement.
Many of these projects take the form of interactive devices
which make use of sensors, actuators, and an embedded proces-
sor to measure, control, and respond to events in the physical
world. These projects inherently span both hardware and soft-
ware. Accordingly, they often require a diverse set of skills
and tools for their successful development.
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Figure 1. A high-level overview of the process that Bifröst uses to record
and visualize execution traces of a user’s embedded system.

Despite growing interest in these projects across education
and experience levels, embedded interactive systems remain
especially hard to understand and debug, for several reasons:

Lack of Visibility Compared to regular software, their oper-
ating state remains opaque and hidden from the developer,
forming an information barrier [19] to understanding.

Difficulty of Fault Localization Faults occur in many loca-
tions, and determining whether they are located in software,
hardware, or at the intersection of the two is problematic [4].

Real-time Requirements Systems that respond in real-time
to user input or sensor data cannot easily be stopped for
breakpoint debugging without disrupting their functioning.

A persistent challenge of developing embedded systems is that
key information, such as progress through a user’s program,
when electrical signals are read or written, and interactions
with peripheral devices are inherently invisible. State only has
a noticeable impact on the outside world when a developer
has proactively chosen to write to and monitor console logs or
through actuators such as LEDs, speakers, or motors.

A suite of specialized inspection and debugging tools exist to
make parts of embedded systems more visible. Multimeters
and oscilloscopes display analog data; logic analyzers show
digital signals; serial terminals and breakpoint debuggers show
program data. However, these tools cannot readily interface
with one another, and as a result, users cannot easily correlate
data collected with different tools. This incompatibility makes
it difficult to interpret behavior that spans from the electrical
domain to the software running on the microcontroller.

We believe that giving developers additional insight into how
hardware and software interact in a richly-linked environment
with a unified interface will enable more efficient debugging of
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Figure 2. An overview image of the Bifröst UI. The trace view panel allows for digital signals, analog signals, and variable values to be visualized in the
same location. The code view panel is a standard code editor with the added ability to use the line numbers to jump to the next point in the recorded
runtime trace when that line was executed. It also allows for users to double click on any variable to include its values from the code alongside trace
data. The serial console adds timestamps to each print statement and links them to their respective execution point in the trace view.

embedded systems. To test this intuition, we built Bifröst, an
integrated hardware/software debugging tool1 (see Figure 1).
Bifröst consists of three major components: instrumentation,
an IDE, and validation. First, we introduce hardware and soft-
ware instrumentation to simultaneously capture key program
and electrical behavior of an embedded system. This includes
execution timing for each line of code, variable values, digital
circuit signals, analog signals, and communication protocols
(e.g., I2C or SPI).

Second, the Bifröst IDE (Figure 2) allows a user to easily nav-
igate and analyze the data captured by the instrumentation and
generated by the validation. These visualizations allow rea-
soning about timing between hardware and electrical signals
(e.g., was a button actually ever read while it was pressed?)
and comparisons between values in software and hardware
(e.g., is a variable in code tracking an analog sensor or over-
flowing as in Figure 3). In contrast with prior work which has
focused on providing tools for debugging software [18, 22, 13,
21] or circuits (e.g., Toastboard [8]), we directly address the
interconnected nature of embedded systems projects.

Third, Bifröst provides an extensible validation infrastructure
for creating and running “checkers”, test functions that have
access to the information captured by the automated instru-
mentation. For example, an automatic checker tests whether
a write issued to a hardware pin succeeded or failed (because
of miswiring or pin misconfiguration), or whether a bus read
resulted in data returned from a sensor or not (because of an
incorrect connection or protocol implementation).

Bifröst supports both retrospective (runtime trace-based) and
introspective (breakpoint-based) debugging. In retrospective
mode, an instrumented version of a user’s program is run for a
set duration. The instrumentation transmits state information

1Bifröst takes its name from the rainbow bridge connecting Earth
(Midgard) and the realm of the gods (Asgard) in Norse mythology.

on a side channel (a hardware serial port). This side channel
is then captured, along with the electrical activity occurring
on the microcontroller’s pins, using a logic analyzer. Simul-
taneous capture provides tight time synchronization between
software and hardware states. This mode is ideal for situations
where it is important for a program to run continuously in near
real-time in order for a user to be able to interact with inputs
or for adherence to a communication protocol.

Introspective mode is an extension of standard breakpoint
debugging. It allows a user to set breakpoints in their code
where program execution will stop and variable values can
be observed. After a breakpoint is hit, Bifröst captures elec-
trical activity as a user steps through their code line by line.
Introspective mode is particularly useful when a user needs to
examine complex program state at precise points in time.

The Bifröst GUI consists of three main views: a standard hori-
zontal graph that can show measured electrical activity as well
as variable values in code over time; a code editor to display
the user’s program; and a tabbed pane that can alternatively
display checker settings, checker results, or a dynamic view of
program serial console output. All views are linked through
timestamps so that navigating to a particular time in one view
causes the other views to update correspondingly.

A key advantage of Bifröst’s integrated approach is that it
allows a user to better understand the context surrounding any
measured event. If the user notices that a checker has flagged
that an output changed incorrectly, they can easily click on
the check to focus the trace view to the event and view what
line of their code caused the output to occur, as well as easily
navigate backwards in time to the lines and pin transitions
preceding the change.

We hypothesize that these interactions provide three primary
benefits: (i) They enable rapid navigation and linking between
a variety of program events: code, signals, checks, and console
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messages; (ii) They facilitate direct comparison between sys-
tem hardware and software state; (iii) Checks can proactively
inform users of problems and thus help users determine or
eliminate possible root causes of problems.

To investigate these hypothesized benefits, we conducted an
exploratory study where 10 participants located problems in
embedded projects with and without Bifröst. We found that
participants particularly appreciated being able to view and
compare hardware state and variables on the same set of axes.
Notably, users took advantage of the linked navigation features
with greater frequency during the more complex study tasks.

RELATED WORK
We first review studies of embedded debugging scenarios and
end-user debugging more generally to distill implications for
our system. The most closely related technical contributions
are tools and user interface techniques for the debugging of
interactive and tangible systems.

Studies of Interactive Device Debugging
Booth [4] studied debugging during a physical computing task.
They found that while most bugs occurred in programming, the
majority of major, failure-causing bugs were due to hardware
issues. Further, participants often misdiagnosed hardware
errors as software bugs and tried to fix the perceived problem
in code. Teteroo [28] discusses key challenges faced by
end user developers of interactive devices and points out that
issues on embedded devices are particularly difficult for users
to understand and debug. Drew [8] reports on insight from
electronics teachers and domain experts. These experts noted
that generating accurate hypotheses was the most challenging
aspect of debugging, which led to a common strategy of falling
back on a prescribed, exhaustive test pattern.
Implications: These findings motivate our work in bridging
the hardware-software gap during debugging, especially in
helping user localize faults in software or hardware.

We would also like to draw attention to concurrent research
efforts at UIST that cover generative embedded system design
[2], prototyping of analog circuits [26], automatic recognition
of components on a breadboard, [35] and measurement of
current flows [34] for breadboard circuits.

Studies of End-User Software Debugging
Since we target Makers who are frequently not professional
electrical or software engineers, understanding requirements
of effective end-user debugging tools is important.

Ko describes six learning barriers for end-user programmers;
effective debugging in particular requires overcoming under-
standing barriers about interpreting externally observable state
and information barriers that keep internal state obscured [19].
Implications: Make more internal state visible via instrumen-
tation; provide context to interpret externally visible behavior.

Gugery and Olson [10] show that novice programmers have
difficulty generating high-quality hypotheses about faults.
Implications: Automatically generate and test application-
independent hypotheses, e.g. that software commands lead to
corresponding events on hardware pins and vice versa, and
provide hints when such tests fail.

LaToza [20] notes that difficulty in searching through code and
traces for relevant information as well as difficulty exploring
program control flow leads to the most time consuming debug-
ging events. Kissinger’s study [16] of spreadsheet debugging
showed that the most important explanation need was about
“Oracles” – finding out if a value in the user’s code is right
or wrong. They also point out that debugging tools should
support global analyses, not just local.
Implications: Provide interactions to rapidly and effectively
navigate recorded trace information; provide context to facili-
tate higher-level reasoning.

Techniques and Interfaces for Software Debugging
Algorithms and user interfaces to help developers with debug-
ging tasks have long been a topic of research. Survey papers
of prior work cover techniques for monitoring program exe-
cution [24], intelligent or automated debugging techniques [9,
27], and fault localization [33]. In addition to technical work,
research has also described fundamental causes of program
errors, and how such an understanding can help professional
software engineers and end-user developers with their debug-
ging practices [36, 17].

A number of recent systems contribute user interfaces for
record/replay and trace debugging. Omniscient Debugging
[30, 25, 21] lets developers move forward and backward in
time through a program execution, based on a complete trace
of all program state. Hoffswell et al. [14] provide recording
and retrospective analysis of event traces in interactive data
visualizations. Theseus [22] provides always-on visualiza-
tion cues about runtime behavior as well as a logging scheme
that simplifies visualization of control flow. Their user study
feedback brought up questions related to the tradeoff between
instrumentation overhead and the concept of omniscience. Un-
ravel [12] allows for real-time monitoring of web based source
code and explored methods of organizing the large amount
of interconnected information. Telescope [13] uses a concep-
tually similar approach to instrumenting and monitoring the
relation between Javascript code and web pages. d.tools [11]
and DejaVu [15] both incorporate visualizations of program
state along with time-series sensor data in order to aid program
development, at different levels of abstraction from Bifröst.
Implications: Develop trace navigation tools that preserve
context. Users respond positively to omniscient tools but can
be overwhelmed by too much additional information.

In contrast to trace visualizers, the Whyline [18] introduces
the idea of interrogative debugging, seeking to answer end
user questions related to causality. In our system, checkers
point out potential root causes, but they cannot yet determine
which of multiple root causes is most likely.

Hardware Debugging Tools
Work in this area can be divided into tools developed specif-
ically for embedded systems and tools developed solely for
interacting with circuits. The Toastboard [8] introduces checks
at the circuit level, based on a user-provided schematic. We
extend their work to checks that cross hardware and software.
Recent commercial products, for example the Digilent Analog
Discovery or Electronics Explorer [7], target students and aim
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Design Goals Realization in Bifröst
Support users with localizing a
fault across software and hard-
ware [4]

Present information about both do-
mains in a common interface

Make internal state visible [19, 31] Hardware and software instrumen-
tation at the granularity of a single
line of code and signal transition;
Protocol decoding

Provide context to interpret exter-
nally visible behavior [19, 31]

Console output and writes to hard-
ware pins are linked to code
through timestamps

Automatically generate and test
application-independent hypothe-
ses [10]

Automatic checkers

Rapidly and effectively navigate
recorded trace information [20]

Linked views: access traces from
code and vice versa; panning and
zooming

Support global analyses [16] User-defined checks: when x hap-
pens in hardware, ensure line y ex-
ecutes within z milliseconds

Table 1. Mapping design goals extracted from prior work to interaction
techniques and the realization of features in Bifröst.

to replace the various pieces of bench-top equipment needed
for hardware debugging; they combine the input/output ca-
pabilities of multiple tools (e.g., oscilloscope, logic analyzer,
arbitrary function generation), but do not bridge hardware
and software. The standardized JTAG interface allows for
execution control of most commercial microprocessors.

INTERACTION DESIGN
The goal of Bifröst is to improve debugging of embedded
systems by displaying and linking hidden aspects of execution
context and running proactive automated checks. Table 1
summarizes how implications from prior studies of debugging
find expression in Bifröst. Our system is further motivated
by Victor’s essays on Learnable Computing [31] and Seeing
Spaces [32], which argue that programming environments
should: make time visible and tangible; enable analysis at
multiple granularities; eliminate hidden state and show the
data; and facilitate comparisons.

Context and Navigation
A central idea underlying Bifröst is that viewing data about
the program and electrical state histories of an embedded
system simultaneously can make it easier to discover bugs.
The main part of the UI shows program execution history on
the same time axis as the electrical activity on the pins of the
microcontroller (see Figure 2). The code editor displays the
program that generated the trace and links selections on both
views. The visualizations allow users to test hypotheses by
comparing expected values at different points in their system
side by side to discover any issues. Users can step forwards
and backwards through code lines with arrow keys or the UI.

We have designed and implemented a variety of linking mech-
anisms between the events Bifröst captures to make it easy for
a user to jump to events of interest in a trace before exploring
their vicinity for clues about the source of an error. These link-
ing mechanisms are summarized in Table 2. At the most basic
level, clicking on a location in the overview trace zooms the
UI onto the line of code that was running at that instant. When
a user clicks on a code line number in the editor, the UI jumps

Location Result
Click on trace or progress
bar at time t

Focus on line executing at t and highlight
line in editor

Left or right arrow Focus on previous or next line execution
and highlight line in editor

Click on line l in editor Focus on next execution of line l and high-
light line in editor

Click on timestamp l in
console

Focus on line executing at l and highlight
line in editor

Click on checker result in
checkers

Focus on line executing at t, show check
time bounds, and highlight line in editor

Table 2. Summary of navigation links between data types in Bifröst.

to the next execution of that line in time (it may execute many
times). In this way, a user can quickly skip forwards from a
less “interesting” instance of a line to search for a time when
the same line executes under more “interesting” conditions.
This also enables testing if a line never executes. Since there is
no event for the UI to jump to, a warning is displayed instead.

Debugging using print statements is pervasive [1], especially
in embedded code. Bifröst enhances ordinary “print statement”
debugging by turning each printed line into a link back to
the execution context that generated the line of text. A user
can quickly skim the integrated console window for a given
string or values and then click on the automatically-generated
timestamp to focus the UI on when the line of code that printed
the text ran. From there they can use the navigation buttons to
view the surrounding program and electrical state.

Proactive Checking
The goal of checks in Bifröst is to enable the system to proac-
tively aid the user by offering suggestions about likely errors
and their causes and by validating the behavior of their pro-
gram. The two kinds of checks implemented in Bifröst corre-
spond to these two goals.

Automatic Checks
Bifröst comes with an extensible set of checks that automati-
cally infer all information necessary for them to run based on
the user’s code. For example, if a user authors code to write
a value to a digital output pin, that write will only succeed
if that call is preceded by a call to set that pin as an output.
The system automatically validates that this relationship holds
for all writes that the user issues by examining the execution
history derived from the captured traces (see Figure 4). The
full set of automatic checks is shown in Table 3.

User-Defined Checks
There are a variety of important program properties that cannot
be directly inferred from the code. For instance, consider
when an application is waiting for a button to be pressed
before taking an action. It is reasonable to assume that when
the voltage on the input pin changes due to the button being
pressed the program should take some action, but the checker
infrastructure cannot automatically determine what that action
should be. In these cases we allow for the user to author checks
of the form “when D4 goes low expect line 65 in 20 ms” using
the interface shown in Figure 5. These checks can validate any
combination of a pin, transition, line number, and time bound.
Clicking the failed check links to the time during the trace at
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Figure 3. Visualizing internal variable values alongside electrical trace
data. A0 is an analog input pin; bvar is a byte variable that stores values
read from A0. This example shows how side-by-side comparison exposes
an overflow of 10-bit analog data in the 8-bit bvar.

Name Description
pinMode Detects if pins are properly initialized with pinMode state-

ments before any read and write operations on that pin
digitalWrite Detects whether digital software write operations update

the hardware state of the target pin successfully
SPI Protocol Detects whether protocol write operations result in the

correct message on the external bus

Table 3. Automatic checks supported by Bifröst.

which it occurred so that the user can begin to examine the
context around the error.

Transparent Instrumentation
In Bifröst, we instrument and modify a user’s program in or-
der to make internal variable and execution state available in
the editor. This is implemented through source code rewrit-
ing. While the instrumentation overhead can negatively affect
the performance of the user’s program, the user is never con-
fronted with the rewritten code. In particular, when stepping
through code, Bifröst performs the bookkeeping to step at the
granularity of the original, uninstrumented source program,
not the rewritten program.

A STROLL ACROSS BIFRÖST
This section presents two running examples to illustrate how
the system would be used in realistic scenarios.

The People Counter
Freya wants to build a system that counts the number of people
who enter and leave her shop over the course of the day. She
decides to first make a prototype using an Arduino, a bread-
boarded circuit, and Bifröst. She’ll use two pairs of infrared
LEDs and IR sensors to detect whether the people are entering
or leaving. A timeout condition will make sure that a momen-
tary false positive on a single one of the sensors – for example,
from someone turning around in the doorway – will not cause
undesirable behavior. Her circuit schematic and a depiction of
the intended operation are shown in Figure 6a.

Immediately after compiling and uploading her code to the
Arduino, the Bifröst status panel notifies her that one of the
built-in system checkers has found an error. Inspecting the
errors list, she sees that she has failed to initialize the pin mode
for one of the output LEDs (Fig. 6b).

She adds a pin mode initialization and re-compiles the code;
during the recording she simulates someone entering and then
leaving by sweeping her finger between the two IR detectors

Figure 4. A subset of the Bifröst check status UI showing three instances
of a failed digitalWrite check. Each test instance lists details about
the environment where it failed including the line number and time.

Hardware Trigger Software

e.g: when D1 rises expect line 17 in 20 ms

Figure 5. The interface for constructing user-defined checker functions.
Users can select an Arduino pin, then select an edge type trigger (rise,
fall, change), and a target line. The result is a unique semantic identifier
for the check, which can also be modified by the user.

and emitters. She can see voltage values rising when her finger
crossed in front of the sensors but the counter, visible in the
Bifröst serial console, still doesn’t change. Noting that the
recorded analog values do not get all the way to 3.3V, Freya
decides to see what the actual variable value is. In the code
editor, double clicking on the variable that stores the analog
read will track it during the next recording. She rerecords the
data. By hovering over the new variable trace she can see that
it never reaches the threshold she had set in her code (Fig. 6c).

After fixing this thresholding problem the counter is still not
incrementing. Freya decides to use the Bifröst’s ability to tie
code line execution to the corresponding point in the trace to
figure out why. She clicks repeatedly on the line number of
the timeout function and notices that it is occurring far too
often. Tracking the relevant variables tells her why; she has
set the timer to microseconds and her timeout value is coded
in milliseconds (Fig. 6d).

Finally, the counter is incrementing when she “enters,” but
now it rapidly increases even when she “leaves.” She suspects
it is an issue with her state flags and double clicks to track
these before re-recording. Clicking on one of these incorrectly
incremented values in the serial console focuses the interface
on the point in the trace recording where it occurred. By using
the left and right arrow keys, she can then move backwards and
forwards in time through the program. After some exploration
it becomes clear that the flag for “entering” is remaining set
even after she has completed the action (Fig. 6e).

A Maker’s Lock
To further equip her shop, Freya next decides to create her
own Arduino-controlled combination lock. A potentiometer
acts as the dial and a button latches in the current value. After
entering a three-value combination in the correct order, a green
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Figure 6. a) Freya’s circuit schematic and an annotated picture of the breadboarded circuit. b) The system checker interface flagging a pinMode error.
c) The trace view showing analog signals alongside their internal system representation. d) Clicking on a line number in the editor moves the trace view
focus to that point in the recorded execution. e) Clicking on a serial print statement in the Bifröst serial terminal also moves the trace view focus to that
point in the recorded execution. From there, the code can be stepped through in time using the left and right arrow keys.

LED will light up (she will replace it with an actuator later).
If an incorrect value is given, a red LED will flash twice.

Currently the program seems to have a bug where, after the
combination is correctly entered and the green light comes
on, it immediately switches off and signals a bad value input.
Freya switches to introspective debugging mode in Bifröst.
She sets a breakpoint at the “correct combination” location in
her code (Figure 7a) and runs the program; once she reaches
that point, execution halts. She can hover over any variable
in the editor window view the current value. She can also
“step” to capture another slice of program and electrical ac-
tivity. Since execution is paused except between steps, it’s
easy to try different combinations of button presses and poten-
tiometer values. It soon becomes clear that, by prematurely
clearing one of her system flags, she is immediately dropping
in to the “incorrect value” statement after the “correct combi-
nation” case (Figure 7b), which explains why the green LED
is immediately being turned off.

IMPLEMENTATION
Bifröst captures program activity as well as analog and digi-
tal electrical signals simultaneously using a 16 channel pro-
grammable logic analyzer and runs checks on the collected
data and visualizes the code and data in its IDE (Figure 1).

Program information is collected in one of two ways: In ret-
rospective mode, the user’s code is instrumented to transmit
line numbers, parameters of system calls, and variable values
through a hardware serial port on the microcontroller. When
the program is run, the port is also captured by the logic
analyzer so electrical and code information are captured simul-
taneously. In introspective mode, the code runs with minor
instrumentation until a breakpoint is reached. Bifröst then
uses the GNU Debugger, GDB, and OpenOCD, an on-chip de-
bugging library, to interrogate program state at the breakpoint.

Figure 7. a) The IDE in introspective mode showing a breakpoint at the
“success” case. b) Hovering over variables reveals their current values.

Once data has been collected, either after a complete run in
retrospective mode or a single step in introspective mode,
Bifröst loads and runs its library of built-in and user-specified
checker test functions against the recorded data.

Hardware
Bifröst uses an off-the-shelf microcontroller and logic ana-
lyzer; the two are connected through a custom PCB. We de-
scribe important design requirements and how our hardware
choices satisfy these requirements.

Microcontroller: The target microcontroller needs to provide
two important hardware resources: first, a hardware UART
not used by the user’s program to emit side-channel program
information for retrospective mode; and second, a debugging
interface for introspective mode. Our system currently sup-
ports the Arduino Zero [3], a 32-bit ARM platform popular
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Figure 8. The connections between Bifröst’s hardware and software.

with makers, which runs programs written in C or C++ and
offers OpenOCD-compatible debug support over USB.

Logic Analyzer: The logic analyzer needs to support program-
matic configuration and data capture. We use a Saleae Logic
Pro 16 analyzer with 16 channels and configure it through
its scripting API to set capture durations, sample rates (up to
500MS/s digital and 50MS/s analog), triggers, and channel
configurations (analog or digital). The API provides protocol
analyzers to decode bus activity (I2C and SPI) as well as our
side-channel serial program information.

Instrumentation through a Custom Shield: The Bifröst PCB is
an Arduino shield that facilitates connecting the logic analyzer
to the Arduino’s pins while allowing them to still be connected
to a user’s circuit. Users can also choose to build their circuit
directly on the shield. One trade-off of this instrumentation
approach is that we only capture activity at the microcontroller
pin, not at arbitrary locations within the circuit.

Software
The Bifröst backend, written in node.js, manages the embed-
ded build process for the user’s code (instrumentation, compi-
lation, and upload); it configures the logic analyzer and reads
its data; and it controls the target microcontroller’s on-board
debugger in introspective mode. The backend also serves the
browser-based user interface (see Figure 8).

Retrospective Mode
When a user clicks “Record” in the UI to collect a retrospec-
tive trace, their program is parsed and instrumented to output
execution data to the microcontroller’s side-channel, the logic
analyzer is configured to capture, the program executes, and
then data from the trace captured by the logic analyzer is
parsed in order to create the Bifröst UI. Our instrumentation
assumes that user programs follow the Arduino convention of
an initial setup function followed by a main loop.

We parse the user’s program and perform these modifications:

Trigger We write a short pulse to a reserved microcontroller
pin at the start of the program that serves as a trigger for the
logic analyzer to start capturing program behavior.

Line numbers To provide location information, we print the
line number of each of the user’s statements to the spare
hardware UART, before executing the statement itself.

Console messages We redirect any console output (Se-
rial.print) to the side-channel so it is captured and time-
stamped by the logic analyzer.

Variable values For variables identified by the user, we print
values to the side-channel at the end of each main loop iter-
ation. This approach is simple, but misses some transitions.
This is discussed further in the Limitations section.

Core API parameters We modified Arduino’s core library
to print the arguments of commonly used functions like
digitalWrite() to the side-channel. This allows check-
ers to inspect when an Arduino core function is called either
by user code or even by otherwise uninstrumented library
code and test whether it succeeded in hardware.

Different types of messages are distinguished using custom
opcodes on the side-channel. Instrumentation is not free —
these operations introduce an overhead that decreases program
performance. Empirically, we determined that the slowdown
on several example programs from the Arduino library ranges
from practically none to as high as 9x (Table 4). The worst
case occurs when a loop calls core functions without any
pauses. In our system, the root causes for the delay are block-
ing UART writes when the transmit buffer is full, which occurs
because the processor runs at 48MHz while the side channel
can only output data at 2M Baud. However, the presence
of even milliseconds-long pauses in the user’s loop give the
serial output time to catch up and avoid blocking execution.
Wider buses, faster communications peripherals, or selective
instrumentation could help mitigate this effect in the future.

We evaluated one alternative side-channel for inclusion in our
system - SEGGER’s JTAG-based RTT (Real Time Transfer)
library. In this approach, debug information is written to a
ring buffer in memory that is read transparently over JTAG.
However, even though the JTAG interface could reliably run
at 5x the speed of the UART, this approach incurred additional
overhead for accurate timestamping, which cut into the poten-
tial performance gain. The unpredictable nature of the JTAG
reads also made it difficult to synchronize the buffered data
with the execution of the program and we ultimately did not
integrate it into Bifröst. Although we did not evaluate them,
we are also aware that some M-series microcontrollers include
a sub-module that facilitates instruction-level trace output that
could be captured to address the synchronization issue.

The last step before a retrospective trace can be captured is
to configure the logic analyzer. The user specifies a capture
duration in seconds, which is passed directly to the analyzer.
The user can select any pin in the UI to capture an analog
trace for. Based on its internal mapping from Arduino pins to
logic analyzer channels, Bifröst translates user-specified pin
selections to the correct logic analyzer channel so that the user
does not need to keep track of the correspondence.
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Button Debounce Fading Blink
Uninstrumented 1.00 1.00 1.00 1.00
Line Execution 2.81 3.32 1.00 1.00
Core Functions 5.54 7.01 1.00 1.00
Line & Core 8.86 9.82 1.00 1.00

Table 4. Summary of performance impacts of code instrumentation.
The cell values represent slowdown factor where 1.0 is full speed.

Introspective Mode
When introspective mode is started, just as in retrospective
mode, the user’s code is parsed and instrumented, the logic
analyzer is configured, the code is run, and the results are dis-
played in the UI. However, introspective mode allows break-
point debugging using a GDB interface directly to the EDBG
(embedded debug) module on the Arduino Zero’s board.

Introspective mode involves less instrumentation as program
state can be retrieved through GDB commands. The introspec-
tive parser only adds the initial logic analyzer trigger pulse
code and wraps each user program statement with two state-
ments that signal the start and end of the command. The in-
strumentation step must also build a correspondence between
the line numbers of user code (used in the UI) and the line
numbers of the instrumented program (used by GDB).

After flashing a new program, the Bifröst server opens up a
GDB session, which in turn communicates with OpenOCD,
which then communicates with the EDBG module on the Zero.
We then reset the microcontroller and run until a breakpoint is
reached. Each “step” command in introspective mode works
similarly to a short retrospective mode trace. When the user
performs a step in the UI, Bifröst starts the logic analyzer,
orders the microcontroller to step, and then parses and appends
the incremental results in the UI.

A key benefit of introspective over retrospective mode is that
GDB can instantaneously read any variable value within the
current scope of program execution. This precision allows for
two convenient interactions within the UI. First, a user can
select variables to “watch” and plot their values over the exe-
cution of the program at a finer granularity than retrospective
mode (each write, instead of each loop). Second, Bifröst al-
lows users to mouse over any variable in their code while
execution is stopped and see the current value as a tooltip even
if the variable is not currently being tracked (Figure 7b).

User Interface
The user interface is served by a node.js server and is respon-
sible for parsing the files generated by the instrumentation,
building a unified history of program execution, and display-
ing an interactively-linked visualization (written in d3 [5])
based on the execution data. In introspective mode, the fron-
tend shares responsibility with the backend in managing the
GDB debugging session. The frontend communicates with the
server over REST and a websocket and makes use of Bootstrap
[29], the open-source Ace editor [6], and jQuery.

Checker Functions
Automatic checks test for behaviors where the correct outcome
is not application-specific. Checks have access to the user’s
source code, a log of Arduino core and line events, and the
trace activity for each pin. The checks are implemented as a

def digitalWriteCheck(event, index, all)
if event.core == digitalWrite # only test writes
pin = event.targetPin # target pin (D1)
val = event.targetVal # write value (HIGH|LOW)
cur = all.traces[pin][index] # read HW pin state
# read next value of the target pin
nextVal = all.traces[pin][index+1]
if nextVal != val
return Error # write failed to change HW pin

else if cur == val
return Warning # pin was already set to value

else nextVal == val
return Passing # pin successfully changed

Figure 9. Pseudo-code for digitalWrite() Checker.

set of Javascript functions that take program trace information
as input, find events of interest within the trace, and evaluate a
relationship for those events. The system then receives a list
of those events and corresponding messages about whether
the relationship held, which are displayed in the user interface.
For example, the digitalWrite() check finds instances of
digital writes in a trace and ensures that the output pin’s voltage
level matches the argument of the function. Psuedo-code for
the digitalWrite() checker is shown in Figure 9 and the
list of currently implemented checks is shown in Table 3.

User-defined checks are explicitly defined by the user, and
can express expected behavior of a particular program. User
checks are represented as simple strings describing what to
check, e.g. “when D4 changes expect line 65 in 20 ms”. Our
system parses these strings and generates a new function based
on the parameters and structure of the input string. This new
checker function is executed over the last recorded data trace,
and the checker results are included in the Status tab.

USER EXPERIENCES WITH BIFRÖST
In order to explore how Bifröst changes debugging workflows,
we conducted an exploratory evaluation with 10 participants
(7 male, 3 female), all university students. Participants were
screened for previous experience in both embedded systems
programming and multimeter use. Their experience levels
ranged from novices with little circuit prototyping and Ar-
duino programming experience (4 participants), to intermedi-
ate builders with moderate Arduino experience (3 participants),
to expert embedded systems developers that had experience
working with logic analyzers (3 participants).

Methodology
After a brief introduction to Bifröst’s core functionality, partic-
ipants were asked to perform six debugging tasks. Each partic-
ipant was given a pre-built circuit connected to a Bifröst shield,
a diagram describing intended functionality of the device, and
an Arduino pre-loaded with code containing known errors.
For the first five diagnostic tasks, each program contained
a single error. Participants were asked to find and correctly
diagnose the root cause of the problem and briefly explain
how they would address the issue within seven minutes. If the
allotted time for a diagnostic task expired, participants were
asked to make a diagnosis before moving on. Each partici-
pant diagnosed three tasks with Bifröst and two tasks using
a multimeter and the Arduino IDE’s built-in serial monitor
and plotter as a control condition. While we are not primarily
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interested in quantitative performance differences, this design
enables participants to directly compare their experience with
and without Bifröst. The last debugging task was larger in
scope: it contained three problems for participants to both
identify and resolve using Bifröst within 30 minutes.

Diagnosis - T1: LED not flashing A circuit to blink two
LEDs, but one is missing a pinMode() and does not blink.

Diagnosis - T2: Broken Toggle A non-debounced button
causes an LED to toggle randomly.

Diagnosis - T3: Noisy Potentiometer A potentiometer that
should turn on an LED at a threshold voltage causes the
LED to flicker near the threshold due to a noisy signal.

Diagnosis - T4: Incorrect Timer A stopwatch that should
count upwards, but contains a counting logic bug.

Diagnosis - T5: Complex Program A bar of LEDs con-
trolled by a potentiometer using 200-lines of switch-case
statements. There is an error in the output logic.

Debug - T6: People Counter Users were presented with the
“People Counter” example from the case study and given 30
minutes to find three errors: (i) an incorrect threshold value
causing analog signals from the IR sensors to not trigger a
flag variable, (ii) a too short error-rejection timeout causing
the system to reject valid inputs, and (iii) directionality flags
persisting after a successfully count, causing the system to
increment its count incorrectly.

We concluded the user-study with a survey regarding the us-
ability and perceived utility of several Bifröst features using a
Likert-scale (ranging from 0 to 5). The survey also contained
a number of open-ended questions about debugging strategies.
For the Likert-scale questions we report means (µ); a score of
5 corresponds to “Very Useful” or “Not Difficult at All.”

Findings
Diagnostic Tasks (T1-5): Nine of ten participants clearly pre-
ferred Bifröst and showed very different patterns of tool usage
across conditions and tasks. Tasks T1-T5 were easy enough
that task completion was not a particularly meaningful metric.
Participants that were assigned Bifröst diagnosed the prob-
lem correctly 80% of the time (24/30); control participants
diagnosed the problem 90% of the time (18/20).

Debugging Task (T6): All participants used Bifröst. Seven
participants were able to fix at least some of the errors, but
only two self-described “expert” users completed all parts of
this task. This suggests that either the task was too difficult
to complete in the allotted 30 minutes, or that there may be a
skill threshold to effective Bifröst usage.

Comparison of Bifröst and Control Usage: Bifröst’s trans-
parent instrumentation strategy seemed to both (i) reduce the
cognitive load associated with instrumentation and contextual-
izing information as well as (ii) reduce the number of errors
introduced in the act of instrumentation.

Control group participants often ended up neglecting instru-
mentation entirely, opting to parse the code and try to keep
a mental map of execution. Conversely, all ten participants
found the trace visualization and the variable tracking features
of Bifröst to be useful (µ=4.6) and easy to use (µ=4.7). One
Bifröst user noted that “I don’t have to play computer in my

head, I can track the variables!” Another opted to track every
possible variable at once after deciding that the required effort
to instrument in this manner was less than the effort required
to re-record a trace. Participants remarked on the advantages
of the “omniscient” nature of retrospective debugging; a third
user said “one more thought on why I like Bifröst over serial
plotter is that you can step forward and backwards in time
rather than just having a continuous real time monitor.”

In the control scenario, introducing program instrumentation
to track variables (through serial prints) led to errors such as
forgetting to initialize serial communication. In four cases
the participant became confused by the functionality of the
Arduino serial plotter - which variables correspond to which
line, if the monitor could be used at the same time as the plotter,
and by the proper code syntax to use. Two participants wasted
time ensuring their instrumentation code was functioning as
expected by printing test text.

When asked about which debugging method they pre-
ferred, all participants except one (who was neutral) favored
Bifröst over traditional methods. Participants mentioned that

“Bifröst works very well for thinking through the problem”,
“Bifröst saves a lot of time on displaying results”, and “Es-
pecially with these real-time programs, being able to slowly
analyze the state of the code was nice”. While acknowledging
the usefulness of various features of Bifröst, three participants
mentioned that they needed more time to learn how the tool
could help them, or felt overwhelmed with the amount of
information available.

Bifröst Debugging Strategies: For debugging hardware-
interfacing problems (T3) we observed a Variable/Signal Com-
parison strategy that involved hovering over traces in the UI
to compare the values of tracked variables to raw I/O signals.
We also observed usage of Automatic Configuration Checks to
verify or find a pin configuration error.

For debugging timing issues (the second part of T6, where
the system always times out), we observed the following de-
bugging strategies: (i) Time-Sensitive Tracking in which par-
ticipants tracked a variable in time and monitored how its
value changed over time in the visualization, (ii) Statement
Frequency Evaluation in which consecutive line number clicks
on a particular line showed the user how frequently a particular
statement was executed and (iii) In-situ Inspection in which
participants used the console to print a variable, and then used
the serial time-stamp to advance the environment to a specific
iteration of the main loop.

For debugging logical issues (T4: Incorrect Timer), partici-
pants primarily used the (i) Multi-Variable Comparison strat-
egy, in which participants visually compared the values of
multiple variables by hovering over the traces in the trace-
view. We also noticed a (ii) Statement Reachability Evaluation
strategy, in which users used line number clicks as a way to
examine if a statement was ever executed.

System Understanding: Participants began to exploit the linked
navigation features of Bifröst as they spent more time with
the tool in T6. One subject said “I really like the fact that
I can see when the lines of code were executed [by clicking
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on the line numbers]!” Another reported that “being able to
go from ‘time in the trace view’ to ‘line in code’ was really
useful, since I didn’t have to find the guilty line of code”.
These statements reflect both an understanding of the interplay
between the interface elements and an appreciation for the
transparent instrumentation.

Sources of Confusion: Users occasionally encountered prob-
lems when attempting to take advantage of the navigation and
visualization features. Three participants mentioned that they
were frustrated because the trace view did not maintain the
zoom level when stepping through code, resulting in a loss of
information context. One user pointed out that the variable
values did not always seem to align with the electrical trace so
they no longer knew if they could believe the visual model.

Some of the users experienced confusion regarding the nature
of retrospective debugging. One user asked: “If I highlight
them [the variables], do I need to re-run the thing?”. Another
user stated that “one thing that isn’t very clear is whether I
use ‘select active’ before or after recording?”. A third user
asked “is it running right now?” before starting a recording.

Finally, we noticed that three novice users did not use some of
the key features. One novice and one intermediate user never
used the line number navigation links, and one other novice
user used print statements instead of line number clicks in
order to determine if a line of code was ever executed.

The above issues might have been reduced by spending more
time training users before the study tasks. The struggles of
the inexperienced users and the difficulties they faced with T6
highlight the fact that Bifröst assumes a level of debugging
familiarity: users have to have an appropriate mental model of
their embedded system in order to effectively use the informa-
tion and navigation affordances that Bifröst provides. Finding
ways to reduce this threshold will be interesting future work.

LIMITATIONS
Not All Errors Can Be Diagnosed: Bifröst focuses on revealing
state inside the user’s code and directly at the pin level of
the microcontroller running the code. It assumes that the
microcontroller board and its core API are not sources of
errors. It also does not capture information about the user’s
circuit (e.g., a schematic), doesn’t facilitate collecting traces at
arbitrary points in the user’s circuit, and does not instrument
library code the user includes. These choices are based on the
assumption that many errors lie either in the user’s code, or at
the interface between the microcontroller and the circuit.

An equally fundamental limitation is that Bifröst runs an in-
strumented and hence modified version of a user’s program.
The instrumentation necessarily affects precise timings within
a program, which often are immaterial, but does open the pos-
sibility of errors that are either hidden due to or even caused
by the instrumentation.

Performance Overhead: Bifröst’s approach of adding lines of
code to a user’s program to instrument it decreases program
performance. We hypothesize that this is unlikely to impact
most projects built in educational settings and by hobbyists.
However it is not as suited for applications with microsecond-

level real time execution constraints, such as “bit-banging”
(emulating a communication protocol with precisely-timed
digital output) or in industrial embedded systems.

Resource Requirements: Bifröst requires exclusive use of three
digital GPIO pins, including one Serial bus, on the target mi-
crocontroller to enable its instrumentation and communica-
tion. Whether the loss of three GPIO pins is significant is
application-dependent (a regular Arduino board has 14 GPIO
pins available). Currently, Bifröst handles Serial print state-
ments by rerouting user Serial debugging commands into its
side channel and UI, effectively “sharing” the bus. However,
this precludes Serial communication for other purposes. A
simple fix would be to duplicate serial messages and send
them to the original port and the side channel.

Manual Configuration: Because there are more pins available
to the user than logic analyzer channels in our implementation,
users have to select which subset of pins to instrument by
manually plugging cable headers into four of six possible
positions. This limitation could be overcome with a bigger
analyzer or an analog crossbar on the PCB.

Scaling: Our UI can render tens of thousands events occurring
during a trace without perceptible delay. However, much larger
traces (e.g. minutes of execution) will require rewriting the
rendering engine.

Limited Granularity: For performance and simplicity, the
values of variables that are tracked in retrospective mode are
only updated at the end of every execution of the main loop.
This could be addressed by searching for and instrumenting
every assignment of a variable in a future iteration.

CONCLUSIONS AND FUTURE WORK
Bifröst is a novel system that combines tools and techniques
from hardware and software debugging in a unified environ-
ment in order to support debugging embedded systems. It
provides a checking infrastructure that supports both checks
inferred from the user’s code to proactively provide hypothesis
testing and user-defined checks that can continuously validate
program properties.

Surveys from a ten-participant user study confirmed that on
average, users found Bifröst’s features intuitive and effective.
A longer term deployment could provide additional insight
into usage patterns and strategies that arise when the tool is
used in a greater variety of scenarios.

Future work will focus on incorporating more measurements
about a user’s circuit into Bifröst’s checking and display in-
frastructure. We will also attempt to more smoothly bridge the
gap between Bifröst’s introspective and retrospective modes
in order to better address the unique mixture of time domains
encountered while designing interactive devices.
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